研究生: |
張至儀 Chang, Chih-Yi |
---|---|
論文名稱: |
仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療 Erythrocyte-like Magnetic Mesoporous Nanogenerators Enhanced Polydox Delivery for Treating Lung Metastatic Cancer |
指導教授: |
胡尚秀
Hu, Shang-Hsiu 陳之碩 Chen, Chi-Shuo |
口試委員: |
張建文
Chang, Chien-Wen 許馨云 Hsu, Hsin-Yun |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 奈米氧化鐵 、麩胺酸 、阿黴素 、標靶治療 、轉移型肺癌 |
外文關鍵詞: | pH sensitive, Hydrazone, Doxorubicine |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,我們製備出具有磁效應仿紅血球形狀的扁平結構奈米載體,利用血液動力學機制與粒子形狀效應,可將載體自發性有效累積於肺部進行腫瘤治療,而該載體可在微酸性環境與磁場作用下產生大量高分子奈米粒子達到腫瘤穿透與藥物遞送目的。在過去,肺癌常面臨藥物難以準確抵達肺部而造成治療上的困難;因此,我們根據血液動力學的邊際效應機制,設計一個扁平狀的多孔性奈米載體,期許其能在血液的流動中,貼齊血管壁運動進而成功累積至肺部。而此多孔性奈米載體的鑑定,透過電子顯微鏡(SEM和TEM)、X光繞射分析儀及超導量子干涉儀可以得知為一具有超順磁性的仿紅血球扁平體。此外,多孔性奈米載體可以夾帶大量具治療功效的高分子複合物(阿黴素-高分子),其乃利用高度生物相容性、低毒性的聚麩胺酸(poly-l-glutamic acid (PGA))為主鏈,支鏈修飾具有酸鹼應答性的腙鍵(hydrazone bonds)和阿黴素形成共價鍵結,當奈米高分子粒子運輸到腫瘤微酸環境時,腙鍵遇到氫離子而發生斷鍵,釋放出阿黴素分子,累積至腫瘤後進而引發細胞凋亡。而這部分實驗已在體外試驗得到驗證,阿黴素-高分子粒子在pH值5.9和6.7時比起生物體pH值7.4時,其藥物釋放率分別提升57%和39%;而為能達到有效的釋放,我們施予高週波熱處理,當多孔性奈米粒子成功累積至肺部時,我們給予體外高週波,刺激孔洞內藥物釋放,除此之外,從孔洞中釋放出來的阿黴素-高分子粒子遇到水相環境中,長碳鏈端聚麩胺酸會自聚集成奈米小球,而其大小大約70-80奈米符合高滲透長滯留效應,而累積至肺部腫瘤處。而細胞毒殺和動物實驗結果顯示,修飾過後的阿黴素-高分子粒子有較低細胞毒殺特性且心肌細胞受損程度也有明顯的下降。而在動物實驗上,我們將黑色素瘤細胞B16F10以尾靜脈注射之方式打入小黑鼠體內,以建立肺癌模型;在動物實驗上已觀察到,在打入腫瘤細胞後第11天,可發現老鼠肺部有明顯的一顆顆黑色素瘤,隨著時間拉長至14天,其肺部的表面黑色素瘤已占70-80%,而在第17-18天時,老鼠會因為呼吸困難而死亡,而將其肺部解剖可觀察到肺部已完全被黑色素瘤攻佔,整個肺部變得結實。而當對老鼠以尾靜脈方式施予攜帶阿黴素-高分子載體並搭配2分鐘之高週波刺激釋放,可發現到老鼠的存活天數,從原本的17-18天,延長至27-29天。因此,經由仿紅血球扁平體搭載阿黴素-高分子粒子為一個有潛力的藥物傳輸平台,且能透過高週波刺激釋放來提高治療效果,期許能在腫瘤治療或其他生醫領域上有更多方面性應用。
Delivery of drug and energy within responsive carriers that effectively target and accumulate in cancer cells promise to mitigate side effects and to enhance the uniquely therapeutic efficacy demanded for personalized medicine. To achieve this goal, however, these carriers which are usually piled up at the tumors periphery near the blood vessels must simultaneously overcome the challenges in low tumor penetration and transport sufficient cargos to the deep tumor to eradicate whole cancer cells. Here, we report an erythrocyte-like silica nanosponges on magnetic nanosheet that doubles as a magneto-thermal agent and high cargo payload platform, which releases a burst of polydox (pDox) and intense heat upon high-frequency magnetic field (HFMF). Last but not least, pDox encapsulated into mesoporous silica not only prolonged drug circulation in vivo but also served as MF-generated nanoparticles for tumor penetration. To form this functional pDox, it was synthesized by covalently conjugating Dox to the poly-l-glutamic acid (PGA) by a pH-sensitive hydrazone linker2. Poly-l-glutamic acid (PGA) possessing unique physicochemical properties is considered for biocompatibility, biodegradability, and non-immunogenicity3. Furthermore, pH-sensitive linker between Dox and PGA is cleaved in the acidic environment of tumor tissue, yielding high intra-cellular concentrations of activated Dox for deep tumor therapy. This sophisticated erythrocyte-like magnetic mesoporous nanogenerator is an excellent delivery platform for penetrated, MF-responsive, and combined chemo-thermotherapy to facilitate tumor treatment and for use in other biological applications.
1.Kim, I.; Byeon, H. J.; Kim, T. H.; Lee, E. S.; Oh, K. T.; Shin, B. S.; Lee, K. C.; Youn, Y. S., Doxorubicin-loaded highly porous large PLGA microparticles as a sustained-release inhalation system for the treatment of metastatic lung cancer. Biomaterials 2012, 33 , 5574-5583.
2.Mei, L.; Liu, Y. Y.; Zhang, Q. Y.; Gao, H. L.; Zhang, Z. R.; He, Q., Enhanced antitumor and anti-metastasis efficiency via combined treatment with CXCR4 antagonist and liposomal doxorubicin. J Control Release 2014, 196, 324-331.
3.Son, G. M.; Kim, H. Y.; Ryu, J. H.; Chu, C. W.; Kang, D. H.; Park, S. B.; Jeong, Y. I., Self-Assembled Polymeric Micelles Based on Hyaluronic Acid-g-Poly(D,L-lactide-co-glycolide) Copolymer for Tumor Targeting. Int J Mol Sci 2014, 15, 16057-16068.
4.Anselmo, A. C.; Gupta, V.; Zern, B. J.; Pan, D.; Zakrewsky, M.; Muzykantov, V.; Mitragotri, S., Delivering Nanoparticles to Lungs while Avoiding Liver and Spleen through Adsorption on Red Blood Cells. Acs Nano 2013, 7, 11129-11137.
5.Sharma, S. V.; Bell, D. W.; Settleman, J.; Haber, D. A., Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007, 7, 169-181.
6.team, T. A. C. S. m. a. e. c. Key Statistics for Lung Cancer. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310696/from
7.Small Cell Lung Cancer Treatment (PDQ)–Patient Version. https://www.cancer.gov/types/lung/patient/small-cell-lung-treatment-pdq.
8.Youlden, D. R.; Cramb, S. M.; Baade, P. D., The international epidemiology of lung cancer - Geographical distribution and secular trends. J Thorac Oncol 2008, 3, 819-831.
9.Jakobsen, J. N.; Sorensen, J. B., Intratumor heterogeneity and chemotherapy-induced changes in EGFR status in non-small cell lung cancer. Cancer Chemoth Pharm 2012, 69, 289-299.
10.Hirsch, F. R.; Janne, P. A.; Eberhardt, W. E.; Cappuzzo, F.; Thatcher, N.; Pirker, R.; Choy, H.; Kim, E. S.; Paz-Ares, L.; Gandara, D. R.; Wu, Y. L.; Ahn, M. J.; Mitsudomi, T.; Shepherd, F. A.; Mok, T. S., Epidermal Growth Factor Receptor Inhibition in Lung Cancer Status 2012. J Thorac Oncol 2013, 8, 373-384.
11.Meng, J. R.; Dai, B. B.; Fang, B. L.; Bekele, B. N.; Bornmann, W. G.; Sun, D. L.; Peng, Z. H.; Herbst, R. S.; Papadimitrakopoulou, V.; Minna, J. D.; Peyton, M.; Roth, J. A., Combination Treatment with MEK and AKT Inhibitors Is More Effective than Each Drug Alone in Human Non-Small Cell Lung Cancer In Vitro and In Vivo. Plos One 2010, 5, e14124
12.de Melo-Diogo, D.; Gaspar, V. M.; Costa, E. C.; Moreira, A. F.; Oppolzer, D.; Gallardo, E.; Correia, I. J., Combinatorial delivery of Crizotinib-Palbociclib-Sildenafil using TPGS-PLA micelles for improved cancer treatment. Eur J Pharm Biopharm 2014, 88, 718-729.
13.Kudo, K.; Ohashi, K.; Ichihara, E.; Minami, D.; Kubo, H.; Sato, A.; Kato, Y.; Isozaki, H.; Kayatani, H.; Tamura, T.; Tanimoto, M.; Kiura, K., The impact of bevacizumab on combination low-dose afatinib and cetuximab therapy in lung cancer cells harboring activated EGFR mutations. Cancer Res 2015, 75.
14.Yang, Y. M.; Yue, C. X.; Han, Y.; Zhang, W.; He, A. N.; Zhang, C. L.; Yin, T.; Zhang, Q.; Zhang, J. J.; Yang, Y.; Ni, J.; Sun, J. L.; Cui, D. X., Tumor-Responsive Small Molecule Self-Assembled Nanosystem for Simultaneous Fluorescence Imaging and Chemotherapy of Lung Cancer. Adv Funct Mater 2016, 26, 8735-8745.
15.Batrakova, E. V.; Gendelman, H. E.; Kabanov, A. V., Cell-mediated drug delivery. Expert Opin Drug Del 2011, 8, 415-433.
16.Zhao, Y. K.; Tang, S. S.; Guo, J. M.; Alahdal, M.; Cao, S. X.; Yang, Z. C.; Zhang, F. F.; Shen, Y. M.; Sun, M. J.; Mo, R.; Zong, L.; Jin, L., Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy. Sci Rep-Uk 2017, 7, 44758.
17.Egea, V.; von Baumgarten, L.; Schichor, C.; Berninger, B.; Popp, T.; Neth, P.; Goldbrunner, R.; Kienast, Y.; Winkler, F.; Jochum, M.; Ries, C., TNF-alpha respecifies human mesenchymal stem cells to a neural fate and promotes migration toward experimental glioma. Cell Death Differ 2011, 18, 853-863.
18.Dwyer, R. M.; Potter-Beirne, S. M.; Harrington, K. A.; Lowery, A. J.; Hennessy, E.; Murphy, J. M.; Barry, F. P.; O'Brien, T.; Kerin, M. J., Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007, 13, 5020-5027.
19.Yang, X. Y.; Li, Y. X.; Li, M.; Zhang, L.; Feng, L. X.; Zhang, N., Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett 2013, 334, 338-345.
20.Li, K.; Liu, H.; Gao, W.; Chen, M.; Zeng, Y.; Liu, J. J.; Xu, L.; Wu, D. C., Mulberry-like dual-drug complicated nanocarriers assembled with apogossypolone amphiphilic starch micelles and doxorubicin hyaluronic acid nanoparticles for tumor combination and targeted therapy. Biomaterials 2015, 39, 131-144.
21.Ganesh, S.; Iyer, A. K.; Morrissey, D. V.; Amiji, M. M., Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials 2013, 34, 3489-3502.
22.Talekar, M.; Trivedi, M.; Shah, P.; Ouyang, Q. J.; Oka, A.; Gandham, S.; Amiji, M. M., Combination wt-p53 and MicroRNA-125b Transfection in a Genetically Engineered Lung Cancer Model Using Dual CD44/EGFR-targeting Nanoparticles. Mol Ther 2016, 24, 759-769.
23.Mo, Z. L.; Gou, H.; He, J. X.; Wang, J.; Guo, R. B., Preparation and Characterization of Conductive and Magnetic PPy/Fe3O4/Ag Nanocomposites. Polym Composite 2014, 35, 450-455.
24.Hyeon, T., Surface design of magnetic nanoparticles for stimuli-responsive
cancer imaging and therapy. Biomaterials 2017, 136, 98 e 114.
25.Iranifam, M., Analytical applications of chemiluminescence-detection systems assisted by magnetic microparticles and nanoparticles. Trac-Trend Anal Chem 2013, 51, 51-70.
26.Draghiciu, L.; Eftime, L.; Muller, R.; Popescu, M.; Herghelegiu, A.; Schiopu, V.; Danila, M., Characterization of Magnetic Nanoparticles Functionalized with Albumin for Biological Applications. Int Semiconduct Con 2009, 167-170.
27.Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P., Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem Rev 2012, 112, 5818-5878.
28.Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I., Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. Acs Nano 2008, 2, 889-896.
29.Wang, Y. J.; Yan, Y.; Cui, J. W.; Hosta-Rigau, L.; Heath, J. K.; Nice, E. C.; Caruso, F., Encapsulation of Water-Insoluble Drugs in Polymer Capsules Prepared Using Mesoporous Silica Templates for Intracellular Drug Delivery. Adv Mater 2010, 22, 4293-4297.
30.Fard, S. M.; Farhadian, N.; Bastami, T. R.; Ebrahimi, M.; Karimi, M.; Allahyari, A., Synthesis, characterization and cellular cytotoxicity evaluation of a new magnetic nanoparticle carrier co-functionalized with amine and folic acid. J Drug Deliv Sci Tec 2017, 38, 116-124.
31.Wang, Y.; Zhao, Q. F.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E. X.; Hu, L.; Zhang, Q.; Jiang, T. Y.; Wang, S. L., Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed-Nanotechnol 2015, 11, 313-327.
32.Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T., Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angew Chem Int Edit 2008, 47, 8438-8441.
33.Herant, M.; Heinrich, V.; Dembo, M., Mechanics of neutrophil phagocytosis: experiments and quantitative models. J Cell Sci 2006, 119, 1903-1913.
34.Litzinger, D. C.; Buiting, A. M. J.; Vanrooijen, N.; Huang, L., Effect of Liposome Size on the Circulation Time and Intraorgan Distribution of Amphipathic Poly(Ethylene Glycol)-Containing Liposomes. Bba-Biomembranes 1994, 1190, 99-107.
35.Moghimi, S. M.; Hunter, A. C.; Murray, J. C., Nanomedicine: current status and future prospects. Faseb J 2005, 19, 311-330.
36.Jain, R. K., Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1999, 1, 241-263.
37.Slack, J. D.; Kanke, M.; Simmons, G. H.; Deluca, P. P., Acute Hemodynamic-Effects and Blood Pool Kinetics of Polystyrene Microspheres Following Intravenous Administration. J Pharm Sci-Us 1981, 70, 660-664.
38.Lee, S. Y.; Ferrari, M.; Decuzzi, P., Design of bio-mimetic particles with enhanced vascular interaction. J Biomech 2009, 42, 1885-1890.
39.Gentile, F.; Chiappini, C.; Fine, D.; Bhavane, R. C.; Peluccio, M. S.; Cheng, M. M. C.; Liu, X.; Ferrari, M.; Decuzzi, P., The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech 2008, 41, 2312-2318.
40.Decuzzi, P.; Ferrari, M., The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 2006, 27, 5307-5314.
41.Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M., The effect of particle design on cellular internalization pathways. P Natl Acad Sci USA 2008, 105, 11613-11618.
42.Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S. Y.; Chiappini, C.; Liu, X.; Ferrari, M., Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 2010, 141, 320-327.
43.Owens, D. E.; Peppas, N. A., Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006, 307, 93-102.
44.van de Ven, A. L.; Kim, P.; Haley, O.; Fakhoury, J. R.; Adriani, G.; Schmulen, J.; Moloney, P.; Hussain, F.; Ferrari, M.; Liu, X. W.; Yun, S. H.; Decuzzi, P., Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Release 2012, 158, 148-155.
45.Decuzzi, P.; Pasqualini, R.; Arap, W.; Ferrari, M., Intravascular Delivery of Particulate Systems: Does Geometry Really Matter? Pharm Res-Dord 2009, 26, 235-243.
46.Yang, Y.; Liu, X. L.; Lv, Y. B.; Herng, T. S.; Xu, X. H.; Xia, W. X.; Zhang, T. S.; Fang, J.; Xiao, W.; Ding, J., Orientation Mediated Enhancement on Magnetic Hyperthermia of Fe3O4 Nanodisc. Adv Funct Mater 2015, 25, 812-820.
47.Nandiyanto, A. B. D.; Kim, S. G.; Iskandar, F.; Okuyama, K., Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Micropor Mesopor Mat 2009, 120, 447-453.
48.Homan, K. Silica-coated Gold Nanoparticles: Surface Chemistry, Properties, Benefits and Applications. http://www.sigmaaldrich.com/technical-documents/articles/materials-science/silica-coated-gold-nanoparticles.html.
49.Beavers, K. R.; Werfel, T. A.; Shen, T. W.; Kavanaugh, T. E.; Kilchrist, K. V.; Mares, J. W.; Fain, J. S.; Wiese, C. B.; Vickers, K. C.; Weiss, S. M.; Duvall, C. L., Porous Silicon and Polymer Nanocomposites for Delivery of Peptide Nucleic Acids as Anti-MicroRNA Therapies. Adv Mater 2016, 28, 7984-7992.
50.Zhang, Y.; Tekobo, S.; Tu, Y.; Zhou, Q. F.; Jin, X. L.; Dergunov, S. A.; Pinkhassik, E.; Yan, B., Permission to Enter Cell by Shape: Nanodisk vs Nanosphere. Acs Appl Mater Inter 2012, 4, 4099-4105.
51.Schauer, R., Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struc Biol 2009, 19, 507-514.
52.Sampaio, J. L.; Gerl, M. J.; Klose, C.; Ejsing, C. S.; Beug, H.; Simons, K.; Shevchenko, A., Membrane lipidome of an epithelial cell line. P Natl Acad Sci USA 2011, 108, 1903-1907.
53.Maxfield, F. R., Plasma membrane microdomains. Curr Opin Cell Biol 2002, 14, 483-487.
54.Lingwood, D.; Simons, K., Lipid Rafts As a Membrane-Organizing Principle. Science 2010, 327, 46-50.
55.Kumar, R.; Roy, I.; Ohulchanskky, T. Y.; Vathy, L. A.; Bergey, E. J.; Sajjad, M.; Prasad, P. N., In Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles. Acs Nano 2010, 4, 699-708.
56.Croissant, J. G.; Fatieiev, Y.; Khashab, N. M., Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Adv Mater 2017, 29, 1604634.
57.Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science 1998, 279, 548-552.
58.Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society 1951, 73, 373-380.
59.Dai, Z. Z.; Yin, J. B.; Yan, S. F.; Cao, T.; Ma, J.; Chen, X., Polyelectrolyte complexes based on chitosan and poly(L-glutamic acid). Polym Int 2007, 56, 1122-1127.
60.Song, Z. J.; Yin, J. B.; Luo, K.; Zheng, Y. Z.; Yang, Y.; Li, Q.; Yan, S. F.; Chen, X. S., Layer-by-Layer Buildup of Poly(L-glutamic acid)/Chitosan Film for Biologically Active Coating. Macromol Biosci 2009, 9, 268-278.
61.Yan, S. F.; Wang, T. T.; Feng, L.; Zhu, J.; Zhang, K. X.; Chen, X. S.; Cui, L.; Yin, J. B., Injectable In Situ Self-Cross-Linking Hydrogels Based on Poly(L-glutamic acid) and Alginate for Cartilage Tissue Engineering. Biomacromolecules 2014, 15, 4495-4508.
62.Wikehooley, J. L.; Haveman, J.; Reinhold, H. S., The Relevance of Tumor Ph to the Treatment of Malignant Disease. Radiother Oncol 1984, 2, 343-366.
63.Hruby, M.; Konak, C.; Ulbrich, K., Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control Release 2005, 103, 137-148.
64.Yoo, H. S.; Lee, E. A.; Park, T. G., Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release 2002, 82, 17-27.
65.Xu, R.; Zhang, G. D.; Mai, J. H.; Deng, X. Y.; Segura-Ibarra, V.; Wu, S. H.; Shen, J. L.; Liu, H. R.; Hu, Z. H.; Chen, L. X.; Huang, Y.; Koay, E.; Huang, Y.; Liu, J.; Ensor, J. E.; Blanco, E.; Liu, X. W.; Ferrari, M.; Shen, H. F., An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotechnol 2016, 34, 4.
66.Ogawara, K.; Yoshida, M.; Higaki, K.; Kimura, T.; Shiraishi, K.; Nishikawa, M.; Takakura, Y.; Hashida, M., Hepatic uptake of polystyrene microspheres in rats: Effect of particle size on intrahepatic distribution. J Control Release 1999, 59, 15-22.
67.Wang, J.; Byrne, J. D.; Napier, M. E.; DeSimone, J. M., More Effective Nanomedicines through Particle Design. Small 2011, 7, 1919-1931.