簡易檢索 / 詳目顯示

研究生: 許志嘉
Hsu, Chih-Chia
論文名稱: 可容忍製程變異之時間量化器用於時脈抖動量測
Process Variation Resilient Time-to-Digital Converter for Clock Jitter Measurement
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員: 呂學坤
Lu, Shyue-Kung
温宏斌
Wen, Hung-Pin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 38
中文關鍵詞: 時間量化器全數位鎖相迴路可容忍製程變異晶片上校正晶片上特性分析解析度調整控制單向變容細胞
外文關鍵詞: Time-to-Digital Converter (TDC), All-Digital Phase-Locked Loop (ADPLL), process variation resilient, on-chip calibration, on-chip characterization, resolution tuning, One-Way Varactor Cell (OWVC)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體製程的萎縮和時間量化技術的進步,時間量測的解析度越來越高,同時,因著製程變異而產生的不線性現象也變得更顯著。
    本篇論文改良了用於時脈抖動量測的脈衝萎縮型(pulse-shrinking-based)時間量化器(Time-to-Digital Converter, TDC),支援了晶片內特性分析以及不線性問題的校正。我們使用了 (1) 單向變容細胞(One-Way Varactor Cells, OWVCs)來做刻度校正 (2) 標準細胞元件之全數位式非整數型鎖相迴路提供訓練時脈訊號 (3) 精密的校正演算法去使各個刻度趨於一致。使用這些技術可以在晶片上得到該時間量化器的特性分析,也可以透過校正達到容忍製程變異的效果。
    本篇論文使用了90nm CMOS製程的標準細胞元件。在經過校正後,時間量化器的微分非線性度(Differential Nonlinearity, DNL)和積分非線性度(Integral Nonlinearity, INL)分別減少了45%及84%,測量誤差從7.03皮秒降至1.28皮秒。


    As the scale shrinking in the semiconductor manufacturing processes and time quantization techniques develop, the resolution of timing measurement is becoming higher. At the same time, the nonlinear effects caused by process variations are also growing significantly.
    This thesis proposes a pulse-shrinking-based Time-to-Digital Converter (TDC) for clock jitter measurement with on-chip characterization and calibrating methodology for the nonlinearity issue. We achieve our goal by using (1) One-Way Varactor Cells (OWVCs) for the resolution tuning, (2) a cell-based Fractional-N All-Digital Phase-Locked Loop (ADPLL) for the precise training clocks, and (3) a sophisticated algorithm that will guide the tuning cells to make the resolutions more consistent. By using these techniques, we can obtain the TDC’s on-chip characteristics and achieve process variation resilience.
    In this thesis, we use 90nm CMOS process standard cells for implementation. With this calibration methodology, the TDC’s Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) are reduced by 45% and 84% respectively. The measurement error is reduced from 7.03ps to 1.28ps.

    Abstract ............................ i 摘要 ................................ ii 致謝 ................................ iii Content ............................. iv List of Figures ..................... vi List of Tables ...................... viii Chapter 1 Introduction .............. 1 1.1 Introduction .................... 1 1.2 The objective of this work ...... 2 1.3 Thesis Organization ............. 4 Chapter 2 Preliminaries ............. 5 2.1 Pulse-Shrinking-Based Time-to-Digital Converter 5 2.2 The nonlinearity of TDC ......... 8 2.3 Fractional-N ADPLL and Period-to-Pulse Converter 10 Chapter 3 Proposed TDC .............. 11 3.1 Architecture of Proposed TDC .... 11 3.2 One-Way Varactor Cell (OWVC) .... 12 3.3 Calibration flow for proposed TDC 16 3.4 On-chip characterization ........ 24 Chapter 4 Simulation Results ........ 26 4.1 Layout of TDC ................... 26 4.2 Nonlinearity cell injection ..... 28 4.3 Mixed-level simulation results .. 29 4.4 Performance analysis ............ 31 4.5 Simulation of jitter measurement 33 4.6 Summary ......................... 34 Chapter 5 Conclusion ................ 35 References .......................... 36

    [1] Stephan Henzler. “Time-to-Digital Converters,” in Springer Netherlands, 2010
    [2] E. Raisanen-Ruotsalainen, T. Rahkonen and J. Kostamovaara, "A low-power CMOS time-to-digital converter," in IEEE Journal of Solid-State Circuits, vol. 30, no. 9, pp. 984-990, Sept. 1995
    [3] P. Dudek, S. Szczepanski and J. V. Hatfield, "A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line," in IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 240-247, Feb. 2000
    [4] J. Y. Won, S. I. Kwon, H. S. Yoon, G. B. Ko, J. -W. Son and J. S. Lee, "Dual-Phase Tapped-Delay-Line Time-to-Digital Converter With On-the-Fly Calibration Implemented in 40 nm FPGA," in IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 1, pp. 231-242, Feb. 2016
    [5] J. Ma et al., "A Mixed Calibration Method of Time-to-Digital Converter for LiDAR Applications," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 2, pp. 436-440, Feb. 2023
    [6] S. Tabatabaei and A. Ivanov, "An embedded core for sub-picosecond timing measurements," Proceedings. International Test Conference, Baltimore, MD, USA, 2002, pp. 129-137
    [7] T. Hashimoto, H. Yamazaki, A. Muramatsu, T. Sato and A. Inoue, "Time-to-digital converter with vernier delay mismatch compensation for high resolution on-die clock jitter measurement," 2008 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 2008, pp. 166-167
    [8] C. Paulus et al., "A 4GS/s 6b flash ADC in 0.13 /spl mu/m CMOS," 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525), Honolulu, HI, USA, 2004, pp. 420-423
    [9] W. Song, J. Lee, N. Cho and J. Burm, "An Ultralow Power Time-Domain Temperature Sensor With Time-Domain Delta–Sigma TDC," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 10, pp. 1117-1121, Oct. 2017
    [10] S. -J. Lin and H. -C. Chen, "A TDC-Based Temperature Sensor for Biomedical Applications," in IEEE Sensors Journal, vol. 22, no. 11, pp. 10396-10403, 1 June1, 2022
    [11] S. Henzler, S. Koeppe, D. Lorenz, W. Kamp, R. Kuenemund and D. Schmitt-Landsiedel, "Variation tolerant high resolution and low latency time-to-digital converter," ESSCIRC 2007 - 33rd European Solid-State Circuits Conference, Munich, Germany, 2007, pp. 194-197
    [12] R. Rashidzadeh, M. Ahmadi and W. C. Miller, "An All-Digital Self-Calibration Method for a Vernier-Based Time-to-Digital Converter," in IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 2, pp. 463-469, Feb. 2010
    [13] T. Iizuka, T. Koga, T. Nakura and K. Asada, "A fine-resolution pulse-shrinking time-to-digital converter with completion detection utilizing built-in offset pulse," 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), Toyama, Japan, 2016
    [14] C. -H. Wu, S. -Y. Huang, M. Chern, Y. -F. Chou and D. -M. Kwai, "Resilient Cell-Based Architecture for Time-to-Digital Converter," 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Bochum, Germany, 2017, pp. 7-12
    [15] Y. -C. Su and S. -Y. Huang, "A Process-Adaptive Cell-Based Cyclic Time-to-Digital Converter Using One-Way Varactor Cells," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31, no. 3, pp. 343-354, March 2023
    [16] Y. -S. Wang, H. -K. Teng and S. -Y. Huang, "Optimization of DCO Using Latch-Based Varactor Cells for a Cell-Based PLL," 2023 IEEE 66th International Midwest Symposium on Circuits and Systems (MWSCAS), Tempe, AZ, USA, 2023, pp. 792-796
    [17] C. -E. Lee and S. -Y. Huang, "A Cell-Based Fractional-N Phase-Locked Loop Compiler," 2018 15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Prague, Czech Republic, 2018, pp. 273-276
    [18] H. -K. Teng and S. -Y. Huang, "A Resilient All-Digital PLL Using Ping-Pong Delay Line," 2024 21st International SoC Design Conference (ISOCC), Sapporo, Japan, 2024, pp. 280-281

    QR CODE