簡易檢索 / 詳目顯示

研究生: 林庭瑜
Lin, Ting Yu
論文名稱: 使用沉浸邊界法探討不同尺寸交互作用之兩球體之DKT現象
Investigation of the DKT Phenomenon of Two Different-size Interacting Spheres using Immersed-Boundary Method
指導教授: 林昭安
Lin, Chao An
口試委員: 吳宗信
黃楓南
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 67
中文關鍵詞: DKT現象沉浸邊界法
外文關鍵詞: DKT phenomenon, Immersed-boundary method
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用沉浸邊界法模擬兩球體在不可以縮液體方腔中的交互運動,探討drafting, kissing 跟 tumbling (DKT)現象,研究兩球在沉降過程中,不同的初始間距、直徑比例之下,流場與兩球體之運動變化。本研究之數值方法與單球沉降之實驗結果比較做驗證。對於兩球體之沉降運動,三種不同的幾何擺放方式將在此探討,分別為Setup-A:大球放置於標準球上方;Setup-B:兩相等之標準球垂直擺放;Setup-C:大球放置於標準球下方。
    研究結果顯示,kissing的時間點會隨著初始間距增加而延後,對於Setup-A,kissing的時間長度隨著直徑比增加而縮短,反之,對於Setup-C,kissing的時間長度隨著直徑比的增加而增長,當初始間距與直徑比例到達某特定值時,則不會發生DKT現象。對於Setup-A與Setup-C兩球間距在球到達終端速度時會增加,而Setup-B之間距則維持一個定值,最後,初始間距與直徑比例對於影響DKT現象的出現將被探討,藉由改變這兩個參數,DKT現象的變動過程顯而易見。


    In present study, the drafting, kissing and tumbling (DKT) phenomenon of two spheres sedimenting in a long container filled with an incompressible fluid is numerically investigated by using the immersed-boundary technique. The main emphasis of this study is to investigate the effect of the initial gap sizes and diameter ratio between two spheres on the flow pattern during sedimentation. The method is first validated with flows induced by a sphere settling under gravity in a small container for which experimental data are available. For sedimentation of two spheres with different sizes, three initial configurations are considered: in Setup-A, the larger sphere is initially located above the regular one; in Setup-B, there are two identical regular spheres; in Setup-C, the regular sphere is initially located above the larger one.

    The results show that, for all three initial configurations, the kissing time delays as the initial gap size increases. For Setup-A, the duration of kissing decreases with the increase of diameter ratio. Instead, for Setup-C, the duration of kissing increases with the increase of diameter ratio and there is no DKT phenomenon beyond threshold initial gap size and diameter ratio. For both Setup-A and Setup-C, the gaps between two spheres at terminal velocity increase, whereas for Setup-B that remain constant because of the same terminal velocity of two spheres. Finally, the effects of initial gap size and diameter ratio on the occurrence of DKT process are investigated. By changing these two parameters, the results reveal the transitions between the DKT phenomena.

    Abstract i Contents ii List of Figures iv List of Tables vi 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Objectives and Motivations . . . . . . . . . . . . . . . . . . . . . . . 12 2 Numerical Methods 14 2.1 Methodology of the Immersed-Boundary Method . . . . . . . . . . . 14 2.1.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.3 Forcing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Determinations of lift and drag forces . . . . . . . . . . . . . . . . . . 20 2.3 Determinations of particle’s collision force . . . . . . . . . . . . . . . 21 2.4 Complete solution procedure . . . . . . . . . . . . . . . . . . . . . . 21 3 Numerical Results 26 3.1 Code validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Grid resolution test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Effects on the DKT phenomenon of two sedimenting spheres . . . . . 29 3.3.1 Interactions of spheres in three initial configurations . . . . . . 30 3.3.2 Effects of the initial gap size . . . . . . . . . . . . . . . . . . . 32 3.3.3 Effects of the diameter ratio . . . . . . . . . . . . . . . . . . . 33 3.3.4 The occurrence of the DKT phenomenon . . . . . . . . . . . . 34 3.4 Parallel Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Conclusions 58

    [1] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy, An accurate Cartesian grid
    method for viscous incompressible flows with complex immersed boundaries.
    J. Comput. Phys. 156 (1999): 209-240.
    [2] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations
    with discontinuous coefficients and singular sources. Siam J. Number. Anal.
    1994 156:209
    [3] R.J. LeVeque, Z. Li, The immersed interface method for eStokes flow with
    elastic boundaries or surface tension. Siam J. Dci. Comput. 1997 18:709.
    [4] D. Calhoun, A Cartesian grid method for solving the two-dimensional
    streamfunction-vorticity equations in irresgular regions. J. Comp. Phys. 2002
    176:231
    [5] Z. Li, M.C. Lai, The ommersed interface method for the Navier-Stokes
    equations with singular forces. J. Comp. Phys. 2001 171:822
    [6] Z. Li, An overview of the immersed interface method and its applications.
    Twaiwanese J. Math 2003 7:1
    [7] C.S. Peskin, Flow patterns around heart valves: a numerical method. J. Comp.
    Phys. 1972 10:252
    [8] C.S. Peskin, The fluid dynamics of heart valves: Experimental, theritiacal and
    computational methods. Annual Review of Fluid Mechanics 1982 14:235
    [9] R.P. Beyer, R.L. LeVeque, Analysis of a one-dimensional model for the
    immersed boundary method. Siam J. Number Anal. 1992 29:332
    [10] M.C. Lai, C.S. Peskin, An immersed boundary method with formal second
    order accuracy and reduced numerical viscosity. J. Comp. Phy. 2000 160:705
    [11] D. Glodstein, R. Handler, L. Sirovich, Modeling a no-slip flow with an external
    force field. J. Comp. Phys. 1993 105:354
    [12] D. Glodstein, R. Handler, L. Sirovich Direct numerical simulation of turlent
    flow over a modeled riblet covered surface. J. Fluid Mech. 1995 302:333
    [13] L.E. Silva, A. Silveira-Neto, J.J.R. Damasceno, Numerical simulation of twodimensional
    flow over a circular cylinder using the immersed boundary method.
    J. Comp. Phys. 2003 189:351
    [14] E.M. Saiki, S. Biringen, Numerical simulation of a cylinder in uniform flow :
    application of a virtual boundary method. J. COmp. Phys. 1996 123:450
    [15] R. Mittal, G. Iaccarino, Immersed boundary methods. Annual Review of Fluid
    Mechanics 2005 37:239-261
    [16] J. Mohd-Yusof, Combined immersed boundary/B-Spline method for
    simulationsof flows in complex geometries in complex geometries CTR annual
    research briefs. NASA Ames/Stanford University; 1997
    [17] R. Verzicco, J.Mohd-Yusof, P.Orlandi, D. Haworth, LES in complex geometries
    using boundary body forces. AIAA Journal 2000; 38:427-433
    [18] E.A. Fadlum, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed
    boundary methods for three dimensional complex flow simulations. J. Comp.
    Phys. 2000;161:30
    [19] E. Balaras, Modeling complex boundaries using an external force field on fixed
    Cartesian grids in large-eddy simulations, Computer and Fluids 2004;33:375-
    404
    [20] Y.H. Tseng, J.H. Ferziger, A ghost-cell immersed boundary boundary method
    for flow in complex geometry. J. Comp. Phys. 2003; 192:593
    [21] J. Kim, D. Kim, H. Choi, An immersed boundary finite volume method for
    simulations of flow in complex geometries. J. Comp. Phys. 2001;171:132
    [22] S.W. Su, M.C. Lai, C.A. Lin, A simple immersed boundary technique for
    simulating amplex flows with rigid boundary. Com. and Fluids 2007;36:313-
    324
    [23] J. Yang, E. Balaras, An embedded-boundary formulation for large-eddy
    simulation of turbulent flows interacting with moving boundaries. J. Comp.
    Phys. 2006;215:12-24
    [24] M. Tyagi, S. Acharya, Large eddy simulation of turbulent flows in complex
    and moving rigid geometries using the immersed boundary method. J. Numer.
    Meth. Fluids 2005;48:691-722
    [25] H.S. Udaykumar, R. MIttal, W. Shyy, Computation of solid-liquid phase fronts
    in the sharp interface limit on fixed grids, J. Comp. Phys. 1999;535-574
    [26] H.S. Udaykumar, R. MIttal, P. Rampunggoon, A. Khanna, A sharp interface
    Cartesian grid method for simulating flows with complex moving boundaries.
    J. Comp. Phys. 2001;174:345-380
    [27] S. Marella, S. Krishnan, H. Liu, H.S. Udaykumar, Sharp interface Cartesian
    grid method I: An easily implemented technique for 3D moving boundary
    computations. J. Comp. Phys. 2005;210:1-31
    [28] D. Kim, H. Choi, Immersed boundary method for flow around an arbitrarily
    moving body. J. Comp. Phys. 2006;212:662-680
    [29] S. Xu, Z.J.Wang, An immersed interface method for simulating the interaction
    of a fluid with moving boundaries. J. Comp. Phys. 2006;216:454-493
    [30] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Periaux, A fictious domain
    approach to the direct numerical simulation of imcompressible viscous flow past
    moving rigid bodies: application to particulate flow, J. Comp. Phys. 169 2001
    363-426
    [31] Z.G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann
    method for solving fluid-particles interaction problems. J. Comp. Phys. 195
    2004 602-628
    [32] J. Yang, F. Stern, A sharp interface direct forcing immersed boundary approach
    for fully resolved simulations of particulate flows. Journal of Fluids Engineering
    Vol.136 040904-1
    [33] W.P. Breugem, 2012, A Second-Order Accurate Immersed Boundary Method
    for Fully Resolved Simulations of Particle-Laden Flows, J. Comp. Phys.,
    231(13), pp. 4469-4498.
    [34] Z. Li, C. Wang. A Fast Finite Differenc Method For Solving Navier-Stokes
    Equations on Irregular Domains. Comm. Math. Sci. 1 (2003): 180-196.
    [35] D.V Le, B.C. Khoo, J. Peraire. An immersed interface method for the
    incompressible Navier-Stokes equations in irregular domains, Proceedings of
    the third MIT conference on computational fluid and solid mechanics, 710,
    Elsevier Science, Jane 2005.
    [36] D. Russell, Z.J. Wang. A Cartesian grid method for modeling multiple moving
    objects in 2D incompressible viscous flow. J. Comput. Phys. 191 (2003): 177-
    205.
    [37] M. Schafer, S. Turek. The benchmark problem flow around a cylinder. In Flow
    Simulation with High-Performance Computer II, Hirschel EH (ed.). Notes in
    Numerical Fluid Mechanics, 52(Vieweg, Braunschweig, 1996) 547-566.
    [38] D.J. Chen, K.h. Lin, C.A. Lin, Immersed boundary method based lattice
    Boltzmann method to simulate 2d and 3d complex geometry flows, Int. J.
    Mod. Phys. C 18 (2007) 585-594.
    [39] J.I. Choi, R.C. Oberoi, J.R. Edwards, K.A. Rosati, An immersed boundary
    method for complex incompressible flows, J. Comput. Phys. 244 (2007) 757-
    784.
    [40] H. Dutsch, F. Durst, S. Becker, H. Lienhart, Lowe-Reynolds-number flow
    around an oscillating circular cylinder at low Keulegan-Carpenter numbers.
    J. Fluid Mech. 360 (1998) 249-271.
    [41] A. ten Cate, C.H. Nieuwstad, J.J. Derksen, H.E. A Van den Akker, Particle
    imaging velocimetry experiments and lattice-Boltzmann simulations on a single
    sphere settling under gravity. Phys. Fluids 14 (2002) 4012-4025.
    [42] Z.G. Feng, E.E. Michaelides, Proteus: a direct forcing method in the
    simulations of particulate flows, J. Comput. Phys. 202 (2005) 251.
    [43] A.J.C. Ladd, Sedimentation of homogeneous suspensions of non-Brownian
    spheres, Phys. Fluids 9, 491 (1977).
    [44] C.E. Pearson, A computational method for time dependent two
    dimensional incompressible viscous flow problems Report No. SRRC-RR-64-
    17. Sudbury(MA): Sperry Rand Reasearch Center; 1964.
    [45] C.C. Liao, Y.W. Chang, C.A. Lin and J.M. McDonough, “Simulating flows
    with moving rigid boundary using immersed-boundary method.“ Computers
    & Fluids, Vol 39, 2010, pp.152-167.
    [46] P.H. Chang, C.C. Liao , H.W. Hsu , S.H. Liu and C.A. Lin, Simulations
    of laminar and turbulent flows over periodic hills with immersed boundary
    method, Computers and Fluids, Vol 92, 2014, pp. 233-243
    [47] H. Choi, P. Moin, Effects of the computational time step on numerical solutions
    of turbulent flow, J. Comput. Phys. 113 (1994) 1-4.
    [48] J. Kim, P. Moin, Application of a fractional-step method to incompressible
    Navier-Stokes equations, J. Comput. phys. 59 (1985) 308-323.
    [49] J. B. Bell, P. Colella, H. M. Glaz, A second-order projection method for the
    incompressible Navier-Stokes equations, J. Comput. phys. 85 (1989) 257-283.
    [50] H.W. Hsu, F.N. Hwang, Z.H. Wei, S.H. Lai, C.A. Lin, A parallel multilevel
    preconditioned iterative pressure Poisson solver for the large-eddy simulation
    of turbulent flow inside a duct. Computers and Fluids,45 (2011) 138-146.
    [51] S. Balay and K. Buschelman and W. D. Gropp and D. Kaushik and
    M. G. Knepley and L. C. Mclnnes, PETSc Web page, (2010) < http :
    //www.mcs.anl.gov/petsc >.
    [52] M.N Chang, A parallel multilevel presondidioned iterative pressure Poisson
    solver for 3D lid-driven cavity. Master thesis, Department of Mechanical
    Engineering, National Tsing Hua University (2013)
    [53] Y. Saad, Iterative methods for sparse linear system. Second ed., Philadelphia:
    SIAM (2004).
    [54] Acmae El Yacoubi and Sheng Xu and Z. Jane Wang, Computational study of
    the interaction of freely moving particles at intermediate Reynolds numbers.
    J. Fluid Mech,227 (2012) pp. 13.
    [55] Feng J, Hu HH, Joseph DD (1994) Direct simulation of initial value problems
    for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation. J
    Fluid Mech 261:95–134.
    [56] Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange
    multiplier/fictitious domain method for particulate flows. Int J Multiph Flow
    25:755–794.
    [57] Uhlmann M (2005) An immersed boundary method with direct forcing for the
    simulation of particulate flows. J Comput Phys 209:448–476.
    [58] Sharma N, Patankar NA (2005) A fast computation technique for the direct
    numerical simulation of rigid particulate flows. J Comput Phys 205:439–457.
    [59] Wan D, Turek S (2006) Direct numerical simulation of particulate flow via
    multigrid FEM techniques and the fictitious boundary method. Int J Numer
    Methods Fluids 51:531–566.
    [60] Apte SV, Martin M, Patankar NA (2009) A numerical method for fully resolved
    simulation (FRS) of rigid particleflow interactions in complex flows. J Comput
    Phys 228:2712–2738.
    [61] Wang L, Guo ZL, Mi JC (2014) Drafting, kissing and tumbling process of two
    particles with different sizes. Comput Fluids 96:20–34.
    [62] Mukundakrishnan K, Hu HH, Ayyaswamy PS (2008) The dynamics of two
    spherical particles in a confined rotating flow: pedalling motion. J Fluid Mech
    599:169–204.
    [63] Shao XM, Liu Y, Yu ZS (2005) Interactions between two sedimenting particles
    with different sizes. Appl Math Mech-Engl 26:407–14.
    [64] Liao CC, Lin CA (2012) Simulations of natural and forced convection flows with
    moving embedded object using immersed boundary method. Comput Methods
    Appl Mech Eng 58:213–216.
    [65] Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, McInnes LC,
    et al. PETSc Web page; 2010. <http://www.mcs.anl.gov/petsc>.
    [66] Hsu SW, Hwang FN, Wei ZH, Lai SH, Lin CA (2012) A parallel multilevel
    preconditioned iterative pressure Poisson solver for the large-eddy simulation
    of turbulent flow inside a duct. Comput Fluids 45:138–146.
    [67] ten Cate A, Nieuwstad CH, Derksen JJ, and Van den Akker HEA (2002)
    Particle imaging velocimetry experiments and lattice-Boltzmann simulations
    on a single sphere settling under gravity. Phys Fluids 14:4012–4025.
    [68] Fortes A, Joseph DD, Lundgren TS, Nonlinear mechanics of fluidization of
    beds of spherical particles. J Fluid Mech 177 (1987):467–83.
    [69] Apte SV, Martin M, Patankar NA, A numerical method for fully resolved
    simulation (FRS) of rigid particleflow interactions in complex flows. J Comput
    Phys 228 (2009):2712–2738.
    [70] L. Wang, Z.L. Guo, J.C. Mi, Drafting, kissing and tumbling process of two
    particles with different sizes, Computers & Fluids 96 (2014): 20-34.
    [71] Chuan-Chieh Liao, Wen-Wei Hsiao, Ting-Yu Lin, Chao-An Lin, Simulations
    of two sedimenting-interacting spheres with different sizes and initial
    configurations using immersed boundary method, Comput Mech (2015)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE