簡易檢索 / 詳目顯示

研究生: 張邵勤
Shao-Chin Chang
論文名稱: 以SOI基板體型加工技術製作之微資料碟致動器
A Bulk-micromachined SOI Micro Media Actuator for Mass Data Storage
指導教授: 盧向成
Shiang-Cheng Lu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 73
中文關鍵詞: 資料碟致動器微探針資料儲存機制XY軸平台
外文關鍵詞: Micro media actuator, probe-based data storage, micro XY stage
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在微機電系統裡,有許多的薄膜材料都可應用於製作致動器,其中矽是最常被使用的,比金屬等材料有絕佳的機械特性。故我們提出一SOI晶片整合體型微加工技術來實現一可應用在微探針資料儲存機制的微資料碟致動器。
    Trimmer與Gabriel為第一個提出以線性驅動機制來驅動微結構元件以達到大位移。本文將對此線性驅動定理做詳細的介紹,並希望能以100 V的驅動電壓使資料碟致動器達到50 □m的位移。
    一個具高精準位移控制、低驅動電壓的靜電力驅動XY軸平台在本論文應用於微探針資料儲存機制,以高深寬比蝕刻技術(Deep Reactive Ion Etching, DRIE)所製作的資料碟製動器有較佳的可靠度及穩定性;要應用在微探針資料儲存機制上,首先需要有大面積平台來提供儲存資料用。本文所提出以整合體型微加工技術所製作的資料碟製動器,相信對於其他各式的高密度儲存機制是具有競爭力的。


    In MEMS technology, there are many thin-film materials which can be applied to fabricate actuators. The material properties of silicon are better than those of metal. We propose a bulk-mocromachining process using the SOI (Silicon On Insulator) wafer to fabricate the micro media actuator (MMA) for the probe-based data mass storage in the thesis.
    Linear surface drives were first suggested by Trimmer and Gabriel as an efficient method of achieving a large travel range describes the design and fabrication of an actuator that is intend to more 50 um at 100 V.
    An electrostatic micro XY stage with a large displacement, a highly precise position control, and a low actuation voltage are essential for the Electrostatic Force Microscopy Probe-based data storage (EFMPDS) in the thesis. The proposed MMA fabricated by the high-aspect-ratio each of single crystal silicon has good performance in reliability and stability. To achieve an EFMPDS with an extremely high density, the stage with a large displacement and precise resolution is desired. We hope to accomplish the MMA successfully, and apply it in PDS application.

    中文摘要 I Abstract II 目錄 III 表目錄 V 圖目錄 VI 第一章 緒論 1 1-1前言 1 1-2 研究背景 2 1-3 文獻回顧 4 1-4 研究目標 7 第二章 資料碟致動器之設計概念與分析 8 2-1 EFMPDS之微機電系統架構 8 2-2 資料碟致動器設計概念 9 2-3 梳型結構致動器設計原理 11 2-4 資料碟致動器數值模擬流程 14 2-4-1 簡單懸臂樑剛性分析 14 2-4-2 方形彈簧剛性分析 17 2-4-3 致動器設計考量 20 2-5 資料碟致動器設計 25 第三章 資料碟致動器製程設計與製作 31 3-1 體型微加工技術 31 3-2資料碟致動器製作流程 33 3-3 實驗問題與討論 45 3-3-1 ICP深蝕刻加工 45 3-3-2 濕式蝕刻釋放製程 47 第四章 量測結果與討論 53 4-1 量測 53 4-2 討論 54 第五章 結論與建議 57 5-1 結論 57 5-2 建議與未來工作 58 參考文獻 59

    [1]. C. L. Dai, K. Yen and P. Z. Chang, “Applied Electrostatic Parallelogram Actuators for Microwave Switches Using the Standard CMOS Process,” J. Micromech. Microeng., Vol. 11, pp. 697-702, 2001.
    [2]. J. S. Han, J. S. Ko, Y. T. Kim and B. M. Kwak, “Parametric Study and Optimization of A Micro-Optical Switch with A Laterally Driven Lectromagnetic Microactuator,” J. Micromech. Microeng., Vol. 12, pp. 939-947, 2002.
    [3]. G. Lihui, Y. Mingbin and F. P. Dow, “RF Inductors and Capacitors Integrated on Silicon Chip by CMOS Compatible Cu Interconnect Technology,” Microelectronics Reliability, Vol. 43, pp. 367-370, 2003.
    [4]. D. A. Thompson and J. S. Best, “The future of magnetic data storage technology,” IBM J. Res. Develop., vol. 44, no. 3, pp. 311-316, 2000.
    [5]. C.F. Quate, “Method and means of data storage using tunneling current data readout,” US Patent 4,575, 822, 1986
    [6]. D.M. Eigler and E.K. Schweizer, “Positioning single atoms with a scanning tunneling microscope,” Nature, vol. 34, no. 6266, pp. 524-526, April, 1990.
    [7]. C. Barrett and C. F. Quate, “Charge storage in a nitride-oxide-silicon medium by scanning capacitance microscopy,” J. Appl. Phys., vol. 70, pp. 2725-2733, 1991.
    [8]. A. Sato and Y. Tsukamoto, “Nanometre-scale recording and erasing with the scanning tunneling microscope,” Nature, vol. 363, pp. 431-432, 1993.
    [9]. R. Imura, T. Shintani, K. Nakamura, and S. Hosaka, Nanoscale modification of phase change materials with near-field light,” Microelectronic Engineering., vol. 30, p.387, 1996.
    [10]. K. Takimoto, H. Kawade, E. Kishi, K. Yano, K. Sakai, K. Hatanaka, K. Eguchi, and T. Nakagiri, “Switching and memory phenomena in Langmuir-Blodgett films with scanning tunneling microscope,” Appl. Phys. Lett., vol.61, no. 25, pp. 3032-3034, 1996.
    [11]. L. P. Ma, W. J. Yang, Z. Q. Xue, and S. J. Pang, “Data storage with 0.7nm recording marks on crystalline organic thin film by a scanning tunneling microscope,” Appl. Phys. Lett., vol. 73, no. 6, pp. 850-852, 1998.
    [12]. T. Hidaka, T. Maruyama, M. Saitoh, N. Mikoshiba, M Shimizu, and T. Shiosaki, “Formation and observation of 50 nm polarized domains in PbZr1-xTixO3 thin film using scanning probe microscope,” Appl. Phys. Lett., vol. 68, pp. 2358-2359, 1996.
    [13]. K. M. Lee, H. J. Shin, W. K. Moon, J. U. Jeon, and Y. Eugene Pak, “Detection mechanism of spontaneous polarization in ferroelectric thin films using electrostatic force microscopy,” Jpn. J. Appl. Phys., vol. 38, pp. 264-266, 1999.
    [14]. W.S.N. Trimmer and K.J. Gabriel, Sensors and Actuators 11, 189, 1987.
    [15]. J.J. Yao et al., “Fabrication of high frequency two-dimensional nanoactuators for scanned probe devices,” J. Microelectromech. Syst., vol. 1, no. 1, pp. 14-22, 1992.
    [16]. Jaecklin V. P., Linder C., Rooij N. F. de, and Moret J. M. “Comb Actuators for XY-Stage”, Sensors and Actuators, A 39, pp.83-89, 1993.
    [17]. S. Hoen et al., “Electrostatic surface drives: theoretical consideration and fabrication,” Int. Conf. on Solid-State Sensors and Actuators, Chicago, pp. 41-44, 1997.
    [18]. M. Lutwyche, U. Drechsler, W. Häberle, H. Rothuizen, R. Widmer, and P. Vettiger, “Planar micromagnetic x/y/z scanner with five degrees of freedom,” in Electrochemical Society Proc., vol. 98, no. 20, pp. 423-433, 1999.
    [19]. C. S. B. Lee, S. J. Han and N. C. Macdonald, “Single Crystal Silicon (SCS) XY-Stage Fabricated by DRIE and IR Alignment,” Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, pp. 28-33, 2000.
    [20]. L. Richard Carley et al, “Single-chip computers with microelectromechanical systems-based magnetic memory” Journal of Applied Physics, vol. 87, pp.6680-6685, May 1, 2000.
    [21]. Jae-joon Choi, Hongsik Park, Kyu Yong Kim, and Jong Up Jeon,”Electromagnetic Micro x-y Stage for Probe-Based Data Storage”, Journal of Semiconductor Technology and Science, Vol 1, pp.84-93, March, 2001
    [22]. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene copper electroplating for chip interconnections,” IBM J. Res. Develop, vol. 42, no. 5, pp. 567-574, 1998.
    [23]. C. Lingk and M. E. Gross, “Recrystallization kinetics of electroplated Cu in damascene trenches at room temperature” J. Appl. Phys., vol. 84, no. 10, pp. 5547-5553, 1998.
    [24]. J. Fernando Alfaro and G.K. Fedder, “Actuation for probe-based data storage,” Int. Conf. on Modeling and Simulation of Microsystems, Puerto Rico, pp. 202-205, April, 2002.
    [25]. Visual Numerics. IMRL, Fortran and C Development tools for mathematical application, User’s Guide. 1999, Houston, Texas, USA.
    [26]. C.-H Kim and Y.-K Kim,“Micro XY-Stage Using Silicon on a Glass Substrate,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 103-107, 2002
    [27]. C.-H. Kim, H.-M. Jeong, J.-U. Jeon, and Y.-K. Kim, “Silicon Micro XY-Stage with a Large Area Shuttle and No-Etching Holes for SPM-Based Data Storage,” Journal of Microelectromechanical Systems, Vol. 12, No. 4, pp. 470-478, 2003
    [28]. Y. Sun, D. Piyabongkarn, A. Sezen, B. J. Nelson and R. Rajamani, “A High-Aspect-Ratio Two-Axis Electrostatic Microactuator with Extended Travel Range,” Sensors and Actuators A, Vol. 102, pp. 49-60, 2002.
    [29]. H. Rothuizen et al., “Fabrication of a micromachined magnetic X/Y/Z scanner for parallel scanning probe applications,” Microelectronic Engineering, vol. 53, pp. 509-512, 2000.
    [30]. H. Rothuizen et al., “Compact copper/epoxy-based electromagnetic scanner for scanning probe applications,” The 15th IEEE Int. Conf. on Micro Electro Mechanical Systems, pp. 20-24, 2002.
    [31]. H. Rothuizen et al., “Fabrication of a micromachined magnetic X/Y/Z scanner for parallel scanning probe applications,” Microelectronic Engineering, vol. 53, pp. 509-512, 2000.
    [32]. H. Rothuizen et al., “Compact copper/epoxy-based electromagnetic scanner for scanning probe applications,” The 15th IEEE Int. Conf. on Micro Electro Mechanical Systems, pp. 20-24, 2002.
    [33]. H. D. Wu, K. F. Harsh, R. S. Irwin, W. G. Zhang, A. R. Mickelson and Y. C. Lee, “MEMS Designed for Tunable Capacitors,” Microwave Symposium Digest, 1998 IEEE MTT-S International , Vol. 1, pp. 127-129, 1998.
    [34]. A. Oz and G. K. Fedder, “RF CMOS-MEMS Capacitor Having Large Tuning Range,” TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, Vol. 1, pp. 851-854, 2003.
    [35]. L. A. Yeh, C.-Y. Hui and N.C. Tien, “Electrostatic model for an asymmetric combdrive,” Journal of Microelectromechanical Systems, 9, no.1, pp.126-135, 2000
    [36]. 盧向成 “Lecture 6 Electrostatic Actuation and Mechanics of Material, ENE 5400 微機電系統設計, Spring 2004”
    [37]. Fatikow, S. and Rembold, U., 1997, Microsystem Technology and Microrobotics, Springer, Berlin. Sekimura M. “Anisotropic Etching of Surfactant-Added TMAH Solution “, Proc. 21th IEEE Micro-Electro-Mechanical Systems Conf. MEMS'99 (Orlando, FL, 17-21 January) ,pp 650-5, 1999.
    [38]. M. Madou, “Fundamentals of Microfabrication”, CRC Press LLC,pp 261, 1997
    [39]. Kirt R. Williams, and Richard S. Muller “Etch Rate for Micromachining Processing” Journal of Microelectromechanical System, Vol. 5. No. 4, December 1996
    [40]. 施瑄芳, “SOI晶片整合面型加工技術於為光學平台之研究”, 國立清華大學碩士論文, 2002。
    [41]. J. Kiihamaki, H. Kattelus, J. Karttunen and S. franssila, “Depth and profile control in plasma etched MEMS structure,” Sensors and Actuators A, 82, pp.234-238, 2000.
    [42]. 陳義隆, “可多方式水平橫向運動電熱式微致動器之設計與製造”,國立雲林科技大學, 2003。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE