研究生: |
杜信誼 Shin-Yi Du |
---|---|
論文名稱: |
鑑定胃幽門螺旋桿菌引起人類胃上皮細胞內酪胺酸處被磷酸化的蛋白質 Identification of Cellular Proteins Being Tyrosine-Phosphorylated in Helicobacter pylori-Infected AGS Gastric Epithelial Cells |
指導教授: |
傅化文
Hua-Wen Fu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 胃幽門螺旋桿菌 、人類胃上皮細胞 、酪胺酸磷酸化修飾 |
外文關鍵詞: | Helicobacter pylori, AGS cells, tyrosine-phosphorylated |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
胃幽門螺旋桿菌是一種微厭氧的革蘭氏陰性菌,一般寄生在人體的胃壁。全球幾乎有一半的人口感染胃幽門螺旋桿菌,但是目前對於胃幽門螺旋桿菌的致病機制仍然不很清楚。根據以往的研究,許多細胞內的訊息傳遞是藉由改變細胞內蛋白質的磷酸化來達成調控的目的;因此推測胃幽門螺旋桿菌的侵入也許會造成寄主細胞內某些蛋白質磷酸化的程度增加或減少。為了驗證此一假設,我使用可偵測蛋白質酪胺酸處是否有磷酸化修飾的抗體,以比較有胃幽門螺旋桿菌感染的人類胃上皮細胞內蛋白質與未受感染的人類胃上皮細胞內蛋白質有何差異。結果顯示當人類胃上皮細胞被胃幽門螺旋桿菌感染之後,細胞內某些蛋白質酪胺酸處的確有磷酸化增加或減少的情形,其中的一些甚至可能是胃幽門螺旋桿菌的細胞毒性相關基因A (cagA)所產生的蛋白造成的磷酸化改變。為了進一步鑑定這些蛋白質,我使用可純化蛋白質酪胺酸處磷酸化修飾的抗體,以免疫沉澱法將它們純化出後解析在膠上並以SYPRO Ruby染色法分析。最後,以質譜儀分析了選出的八個可能有磷酸化改變的蛋白質條帶,其中的M2型丙酮酸激酶 (M2-type pyruvate kinase)是最有可能在胃幽門螺旋桿菌感染後酪胺酸處磷酸化增加的蛋白質。
Abstract
Helicobacter pylori, a spiral, gram-negative, microaerophilic bacterium that colonizes the human stomach, is thought to infect about half of the world’s population. However, little is known about the molecular mechanisms by which H. pylori exerts the pathogenesis. Base on our knowledge, most of the proteins involved in the signaling events might be regulated by phosphorylation. To determine whether cellular proteins are phosphorylated after H. pylori infection, the proteins being tyrosine-phosphorylated in AGS cells after H. pylori infection were examined by Western blot analysis. I found that several proteins in AGS cells were phosphorylated or dephosphorylated at tyrosine residues after H. pylori infection. Many of these tyrosine-dephosphorylated proteins belong to CagA (cytotoxin-associated gene A)-dependent event. To further identify these tyrosine-phosphorylated or dephosphorylated proteins, I applied the immunoprecipitation technique to isolate these proteins and resolved them by SDS-PAGE followed by SYPRO Ruby staining. Eight bands of interest were excised from the gel and subjected to in-gel tryptic digestion. After analyzing by MALDI-MS, M2-type pyruvate kinase was identified as the most possible protein which was phosphorylated in response to H. pylori infection.
References
Akopyants, N. S., Clifton, S. W., Kersulyte, D., Crabtree, J. E., Youree, B. E., Reece, C. A., Bukanov, N. O., Drazek, E. S., Roe, B. A., and Berg, D. E. (1998). Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 28, 37-53.
Asahi, M., Azuma, T., Ito, S., Ito, Y., Suto, H., Nagai, Y., Tsubokawa, M., Tohyama, Y., Maeda, S., Omata, M., et al. (2000). Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J Exp Med 191, 593-602.
Backert, S., Moese, S., Selbach, M., Brinkmann, V., and Meyer, T. F. (2001). Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells. Mol Microbiol 42, 631-644.
Backert, S., Ziska, E., Brinkmann, V., Zimny-Arndt, U., Fauconnier, A., Jungblut, P. R., Naumann, M., and Meyer, T. F. (2000). Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol 2, 155-164.
Bretscher, A., Edwards, K., and Fehon, R. G. (2002). ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3, 586-599.
Censini, S., Lange, C., Xiang, Z., Crabtree, J. E., Ghiara, P., Borodovsky, M., Rappuoli, R., and Covacci, A. (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 93, 14648-14653.
Christie, P. J., and Vogel, J. P. (2000). Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8, 354-360.
Cottet, S., Corthesy-Theulaz, I., Spertini, F., and Corthesy, B. (2002). Microaerophilic conditions permit to mimic in vitro events occurring during in vivo Helicobacter pylori infection and to identify Rho/Ras-associated proteins in cellular signaling. J Biol Chem 277, 33978-33986.
Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J., and Rappuoli, R. (1999). Helicobacter pylori virulence and genetic geography. Science 284, 1328-1333.
Danesh, J. (1999). Helicobacter pylori infection and gastric cancer: systematic review of the epidemiological studies. Aliment Pharmacol Ther 13, 851-856.
Dunn, B. E., Cohen, H., and Blaser, M. J. (1997). Helicobacter pylori. Clin Microbiol Rev 10, 720-741.
Ernst, P. B., and Gold, B. D. (2000). The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev Microbiol 54, 615-640.
Luftner, D., Mazurek, S., Henschke, P., Mesterharm, J., Schildhauer, S., Geppert, R., Wernecke, K. D., and Possinger, K. (2003). Plasma levels of HER-2/neu, tumor type M2 pyruvate kinase and its tyrosine-phosphorylated metabolite in advanced breast cancer. Anticancer Res 23, 991-997.
Marchetti, M., Arico, B., Burroni, D., Figura, N., Rappuoli, R., and Ghiara, P. (1995). Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science 267, 1655-1658.
Marshall, B. J., and Warren, J. R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311-1315.
Mazurek, S., Boschek, C. B., Hugo, F., and Eigenbrodt, E. (2005). Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol.
Moese, S., Selbach, M., Zimny-Arndt, U., Jungblut, P. R., Meyer, T. F., and Backert, S. (2001). Identification of a tyrosine-phosphorylated 35 kDa carboxy-terminal fragment (p35CagA) of the Helicobacter pylori CagA protein in phagocytic cells: processing or breakage? Proteomics 1, 618-629.
Montecucco, C., and Rappuoli, R. (2001). Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol 2, 457-466.
Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W., and Haas, R. (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497-1500.
Presek, P., Reinacher, M., and Eigenbrodt, E. (1988). Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by Rous sarcoma virus. FEBS Lett 242, 194-198.
Segal, E. D., Cha, J., Lo, J., Falkow, S., and Tompkins, L. S. (1999). Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A 96, 14559-14564.
Segal, E. D., Falkow, S., and Tompkins, L. S. (1996). Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc Natl Acad Sci U S A 93, 1259-1264.
Selbach, M., Moese, S., Backert, S., Jungblut, P. R., and Meyer, T. F. (2004). The Helicobacter pylori CagA protein induces tyrosine dephosphorylation of ezrin. Proteomics 4, 2961-2968.
Selbach, M., Moese, S., Hurwitz, R., Hauck, C. R., Meyer, T. F., and Backert, S. (2003). The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. Embo J 22, 515-528.
Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W. J., and Covacci, A. (2002). c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol 43, 971-980.
Stein, M., Rappuoli, R., and Covacci, A. (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A 97, 1263-1268.
Tisdale, E. J. (2002). Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase Ciota /lambda and plays a role in microtubule dynamics in the early secretory pathway. J Biol Chem 277, 3334-3341.
Uemura, N., Okamoto, S., Yamamoto, S., Matsumura, N., Yamaguchi, S., Yamakido, M., Taniyama, K., Sasaki, N., and Schlemper, R. J. (2001). Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345, 784-789.
Ullrich, A., and Schlessinger, J. (1990). Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203-212.
Weed, S. A., and Parsons, J. T. (2001). Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20, 6418-6434.