簡易檢索 / 詳目顯示

研究生: 周以祥
論文名稱: CoCrFeNiV-Al, Ti, Cu高熵合金機械合金固溶化順序之研究
指導教授: 陳瑞凱
林樹均
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 110
中文關鍵詞: 五元至八元高熵合金機械合金固溶均質化先後順序非晶質化元素熔點晶粒大小BCC相析出σ-CoCrNi相溶解硬度楊氏模數K緣Fourier轉換EXAFS
外文關鍵詞: 5E to 8E high-entropy alloys, mechanically alloying, solid-solutionization sequence, amorphization, melting points of elements, grain size, BCC precipitation, σ-CoCrNi solid-solutionization, hardness, Young’s modulus, K-edge Fourier transform EXAFS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用機械合金法,以CoCrFeNiV為基礎,依次添加Al、AlTi及AlTiCu元素,製備出五元、六元、七元及八元高熵合金。XRD分析結果顯示FCC五元、BCC六元、BCC七元及BCC八元合金粉末,球磨至4小時皆可以達到固溶均質化。而球磨至60小時,除了五元合金以外,其他均可形成非晶質相。SEM元素影像分析結果,顯示元素固溶先後順序大致為Al → Cu → Ni → Co → Fe → Ti、Cr、V。元素在合金內固溶化先後順序與合金內成分元素的熔點高低有很大的相關性。DTA與DSC分析結果,顯示六元、七元及八元60小時球磨非晶質合金粉末的BCC相析出溫度分別為370、402及359 oC,而σ-CoCrNi相固溶化溫度分別為1045、1080及1067 oC。60小時球磨五元FCC合金粉末在加熱過程中沒有相變化。五元、六元、七元及八元合金粉末所得之硬度值,轉換成楊氏模數差對混合焓作圖,可得一線性趨勢線:E = -5.89 □Hm;而楊氏模數差對自由能作圖可得趨勢線:E = -4.58 Gm。本實驗從元素態及6小時球磨機械合金態粉末的K緣Fourier轉換延伸X光吸收之精細結構EXAFS數據比較分析可得: 1. 各元素 K緣 Fourier轉換 EXAFS主峰及次主峰群均會因系統元素的增加而被壓縮(朝較密集方向堆積)或被合併而消失(merged),其中主峰以被壓縮為主,次主峰群則以被合併而消失為主;2. 證實五元6小時球磨機械合金粉末係以Ni及Co為主體元素的FCC結構;六元及七元6小時球磨機械合金粉末則以Cr及Fe為主體元素的BCC結構。


    In this experiment we prepared mechanically alloying high-entropy alloy powders based on CoCrFeNiV (5E) by sequentially adding Al (6E), AlTi (7E) and AlTiCu (8E). XRD results showed that 5E to 8E alloy powders all were solid-solution-homogenized after 4-h ball milling where 5E was FCC, and 6E to 8E were BCC , while 6E to 8E were amorphized after 60-h ball milling. SEM mapping showed that the solid-solutionization sequence of composed elements was Al →Cu →Ni →Co →Fe →Ti, Cr, V. It showed that the sequence was closely related to the melting points of involved elements in the alloys. DTA and DSC analyses showed 60-h amorphized 6E to 8E alloys precipitated BCC phase at 370, 402 and 359 oC, respectively, and solutionized for σ-CoCrNi phase at 1045, 1080, and 1067 oC, respectively, while the FCC solid-solutionized 5E alloy had no phase transformation during heating to high temperature. The derived Young’s modulus difference (□E) from hardness Hv values of 5E to 8E alloys vs. mixing enthalpies (□Hm) and vs. mixing free energy (□Gm) showed linear dependence as □E = -5.89 □Hm, and □E = -4.58 □Gm, respectively. Finally, it showed that radii, at which the main peak and other lower peaks of the K-edge Fourier transform values for any of the containing elements in alloys occurred, decreased or peak merged, as the number of elements in alloys increased. Among them, radii for the main peak is principally decreased and compressed, while other lower peaks are principally merged to new broadened lower peaks. For 6-h ball milling 5E mechanically alloy powders EXAFS ( Extended X-ray Absorption Fine Structure ) data showed that the FCC structure was constructed principally by the structure of elemental Ni and Co, while the BCC structure of 6E and 7E alloy powders ball-milled for 6-h were principally composed of that of elemental Cr and Fe as we compared the K-edge Fourier transform EXAFS data of 6-h mechanically alloying state to that of elemental state.

    目錄 頁次 致謝 摘要......................................................Ⅰ 目錄......................................................Ⅱ 圖目錄....................................................Ⅵ 表目......................................................XI 1. 前言....................................................1 2. 文獻回顧................................................3 2.1非晶質合金發展過程....................................3 2.2非晶質合金製程與其優越的特性..........................4 2.3影響非晶質合金形成因素................................6 2.3.1玻璃形成能力......................................6 2.3.2冷卻速率..........................................8 2.3.3合金原子間的鍵結特性與晶體結構特性................9 2.4機械合金法............................................9 2.4.1 機械合金法的發展歷史.............................9 2.4.2 影響機械合金的幾個主要因素..........................11 2.4.2.1 常見的球磨機形式...........................11 2.4.2.2磨球與粉末的重量比..........................12 2.4.2.3球磨時的氣氛與溫度..........................13 2.4.3機械合金法的機制.................................13 2.4.4 利用機械合金法形成非晶質合金....................14 2.4.4.1 利用機械合金法形成非晶質合金的三種型態.....14 2.4.4.2 形成非晶質合金的基本原理...................16 2.4.4.3 利用機械合金法形成非晶質合金的機制.........16 2.5高熵合金.............................................18 2.5.1高熵合金的基本概念................................18 2.5.2高熵合金的特點及潛力..............................20 2.5.3高熵合金均質相混合焓與非晶質相混合焓理論計算......22 2.6 同步輻射X光吸收光譜.................................24 2.6.1基本原理..........................................25 2.6.2基本理論..........................................26 3. 實驗方法...............................................40 3.1合金設計.............................................40 3.2合金粉末的配製.......................................40 3.3微結構觀察...........................................40 3.4 X光繞射分析.........................................41 3.5硬度Hv量測...........................................41 3.6 熱分析..............................................41 3.7 熱處理..............................................43 3.8同步輻射X光吸收譜....................................43 4. 結果與討論.............................................45 4.1 X光繞射及微結構分析.................................45 4.1.1五元合金(5E CoCrFeNiV)...............................45 4.1.2六元合金(6E CoCrFeNiVAl).............................46 4.1.3七元合金(7E CoCrFeNiVAlTi)...........................46 4.1.4八元合金(8E CoCrFeNiVAlTiCu).........................47 4.1.5五元至八元合金.......................................48 4.2元素固溶化的順序.....................................58 4.2.1五元合金(5E CoCrFeNiV)...........................58 4.2.2六元合金(6E CoCrFeNiVAl).........................58 4.2.3七元合金(7E CoCrFeNiVAlTi).......................59 4.2.4八元合金(8E CoCrFeNiVAlTiCu).....................59 4.2.5五元合金至八元合金元素固溶化順序.................60 4.3 合金的硬度、楊氏模數與□Hm及□Gm的關係..............70 4.4 機械合金的熱分析....................................74 4.4.1五元合金熱分析.......................................74 4.4.2六元合金熱分析與熱處理...............................74 4.4.3七元合金熱分析與熱處理...............................75 4.4.4八元合金熱分析與熱處理...............................75 4.4.5五元、六元、七元及八元合金熱分析與熱處理比較.........76 4.5元素置換的效應.........................................81 4.5.1 CoCrFeNiVAl與AlCoCrCu0.5FeNi兩系統比較..............81 4.5.2 CoCrFeNiVAlTi與AlCoCrCu0.5FeNiTi兩系統比較..........81 4.5.3 CoCrFeNiVAlTiCu與AlCoCrCu0.5FeMoNiTi兩系統比較......82 4.6各元素K-edge EXAFS...................................87 4.6.1 Ni與Co元素......................................87 4.6.2 Cr、Fe與V元素...................................88 4.6.3各元素在不同狀態下之K緣Fourier轉換EXAFS數據比較..89 4.6.4 綜合機械合金過程元素固溶化順序以及同步輻射分析結果........................................................89 5. 結論...................................................98 6. 參考文獻..............................................102

    1. A. Inoue, N. Nishiyama, H. Kimura, Materials Transactions JIM 38 (1997) 179-183.
    2. A. Inoue, T. Zhang, A. Takeuchi, Applied Physics Letters 71 (1997) 464-466.
    3. T. Zhang, A. Inoue, Materials Transactions JIM 39 (1998) 1001-1006.
    4. A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, Materials Transactions JIM 33 (1992) 937-945.
    5. A. Inoue, T. Zhang, Materials Transactions JIM 37 (1996) 185-187.
    6. A. Inoue, T. Nakamura, T. Sugita, T. Zhang, T. Masumoto, Materials Transactions JIM 34 (1993) 351-358.
    7. D.V. Louzguine, A. Inoue, Materials Letters 39 (1999) 211-214.
    8. L.Q. Xing, C. Bertrand, J.P. Dallas, M. Cornet, Materials Science and Engineering A 214 (1998) 216-225.
    9. 黃國雄,「等莫耳比多元合金系統之研究」,國立清華大學材料科學與工程研究所碩士論文 (1996).
    10. 陳廷傑,「簡單相高熵合金AlxCoCrFeNi (0□□ x □ 2) 之電性質研究」,國立清華大學材料科學與工程研究所碩士論文 (2006).
    11. 賴高廷,「高亂度合金為結構及性質探討」,國立清華大學材料科 學與工程研究所碩士論文 (1998).
    12. 許雲翔,「以FCC及BCC元素為劃分配置等莫耳多元合金系統之 研究」,國立清華大學材料科學與工程研究所碩士論文 (2000).
    13. 洪育德,「Cu-Ni-Al-Co-Cr-Fe-Si-Ti高亂度合金之探討」,國立清華大學材料科學與工程研究所碩士論文 (2001).
    14. 陳昆奇,「機械合金法製備之九元AlCoCrCuFeMoNiTiV、十元AlCoCrCuFeMoNiTiVZr及十一元AlCoCrCuFeMoNiTiVZrC高熵合金粉末之微結構分析研究」,國立清華大學材料科學工程研究所碩士論文 (2004).
    15. 胡雅惠,「以機械合金法製備Cu-Ni-Al-Co-Cr-Fe-Ti-Mo合金粉末微結構及性質之研究」, 國立清華大學材料科學工程研究所碩士論文 (2004).
    16. 藍天勇,「高熵AlMnSiSnxTiZry機械合金粉末的微結構及性質之研究」, 國立清華大學材料科學工程研究所碩士論文 (2005).
    17. P.K. Huang, J.W. Yeh, T. T. Shun, S.K. Chen, Advance Engineering Materials, 6 (2004) 74.
    18. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Advance Engineering Materials, 5 (2004) 299.
    19. C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Metallurgical and Materials Transactions A, 35A (2004) 1465.
    20. C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, Metallurgical and Materials Transactions A, 36A (2005) 881.
    21. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin and S.Y. Chang, Metallurgical and Materials Transactions A, 36A (2005) 1263.
    22. Y.Y. Chen , T. Duval , U.D. Hung, J.W. Yeh and H.C. Shih, Corrosion Science 47 (2005) 2257.
    23. Y.Y. Chen , U.T. Hong, H.C. Shih, J.W. Yeh, T. Duval, Corrosion Science 47 (2005) 2679.
    24. Y.Y. Chen, U.T. Hong, J.W. Yeh, H.C. Shih, Scripta Materialia, 54 (2006) 1997-2001.
    25. T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong, Surface & Coatings Technology, 188-189 (2004) 193.
    26. C.H. Tsau, J.W. Yeh and J.S.C. Jang, Metallurgical and Materials Transactions A, 37A (2006) 175.
    27. J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.T. Shun, C.H. Tsau and S.Y. Chang, Metallurgical and Materials Transactions A, 35A (2004) 2533.
    28. Y.Y. Chen , U.T. Hong, J.W. Yeh and H.C. Shih, Applied Physic Letter, 87 (2005) 261918-1.
    29. T.K. Chen, M.S. Wong, T.T. Shun and J.W. Yeh, Surface & Coatings Technology, 200 (2005) 1361.
    30. M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang and M.H. Chuang, Metallurgical and Materials Transactions A, 37A (2006) 1363.
    31. M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang and C.P. Tu, Metallurgical and Materials Transactions A, 37A (2006) 1395.
    32. J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang and H.C. Chen, Wear, 261 (2006) 513.
    33. R.L. White, The Use of Mechanical Alloying in the Manufacture of Multifilamentary Superconducter Wire, Ph. D. Thesis, Stanford University (1979).
    34. C.C. Koch, O.B. Cavin, C.G. McKamey and J.O. Scarbrough, Applied Physics Letters 43 (1983) 1017.
    35. M.S. El-Eskandarany, K. Aoki and K. Suzuki, Journal of Alloys and Compounds 186 (1992) 15.
    36. M.S. El-Eskandarany, K. Aoki and K. Suzuki, Scripta Metallurgical et Materialia 25 (1991) 1695.
    37. J.S. Benjamin, Metallurgical Transactions, 1 (1970) 2943.
    38. J. Eckert, J.C. Holzer, C.E. III Krill and W.L. Johnson, Materials Science Forum, 505 (1992) 88.
    39. Y.R. Abe and W.L. Johnson, Materials Science Forum, 513 (1992) 88.
    40. J. Kuyama, K.N. Ishihara and P.H. Shingu, Materials Science Forum, 521 (1992) 88-90.
    41. J. Kramer, Z. Physics, 106 (1937) 639.
    42. J. Kramer, Annln Phys., 37 (1934) 19.
    43. H.W. Kui, A.L. Greer and D. Turnbull, Applied Physics Letters, 45 6 (1984) 615.
    44. A. Inoue, K. Kita, T. Masumoto and K. Ohtera, Japanese Journal of Applied Physics Part 2-Letters, 27 10 (1998) 1796.
    45. A. Inoue, K. Kita, T. Masumoto and T. Zhang, Materials Transactions JIM, 30 (1989) 722.
    46. A. Inoue, T. Zhang and T. Masumoto, Materials Transactions JIM, 31 (1990) 177.
    47. A. Inoue and T. Masumoto, U.S. Patent No. 5032196, Japanese Patent 07-122120.
    48. A. Peker and W.L. Johnson, Applied Physics Letters, 63 17 (1993) 2342.
    49. A. Inoue, T. Zhang, K. Ohba and T. Shibata, Materials Transactions JIM, 36, 7 (1995) 876.
    50. A. Inoue and J. S. Gook, Materials Transactions JIM, 36 10 (1995) 1282.
    51. A. Inoue, N. Nishiyama and T. Matsuda, Materials Transactions JIM, 37 2 (1996) 181.
    52. Y. He, T.D. Shen and R.B. Schwarz, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 29 7 (1998) 1795.
    53. T. Zhang and A. Inoue, Materials Transactions JIM, 39 10 (1998) 1001.
    54. A. Inoue and T. Zhang, Materials Transactions JIM, 40 (1999) 301.
    55. A. Inoue, Bulk Amorphous Alloys, Vol 2, Trans Tech Publications, Zurich (1999) 28.
    56. H.S. Chen, H.J. Leamy and C.E. Miller, Annual Review of Materials Science, 10 (1980) 363.
    57. B.B. Prasad, T.R. Anantharaman, A.K. Bhatnagar, D. Ganesan and R. Jagannathan, Journal of Non-crystalline Solids, 61-2 Jan. (1984) 391.
    58. Carlisle and H. Ben, Machine Design, 58 1 (1986) 24.
    59. H. Jones, Rapid Solidification of Metals and Alloys, Inst. of Metallurgists, London (1982).
    60. F.G. Yost, Journal of Materials Science, 16 11 (1981) 3039.
    61. P. Haasen, "Metallic Glasses", Journal of Non-Crystalline Solids, 56 1-3 (1983) 191.
    62. A. Inoue, T. Zhang and T. Masumoto, Journal of Non-Crystalline Solids, 156 MAY (1993) 473.
    63. T. Egami, Journal of Non-Crystalline Solids 317 (2003) 30.
    64. A.L. Greer, Nature, 366 (1993) 303.
    65. J.S. Benjamin, Metallurgical Transactions, 1 (1970) 2943.
    66. J. Eckert, J.C. Holzer, C.E. III Krill and W.L. Johnson, Materials Science Forum, 505 (1992) 88.
    67. Y.R. Abe and W.L. Johnson, Materials Science Forum, 513 (1992) 88.
    68. J. Kuyama, K.N. Ishihara and P.H. Shingu, Materials Science Forum, 521 (1992) 88.
    69. M.A. Morris and D.G. Morris, Materials Science Forum, 529 (1992) 88.
    70. M.S. El-Eskandarany, M. Omoris, T.J. Konno, K. Sumiyama, T. Hirai and K. Suzuki, Metallurgical Transaction A, 29 (1998) 1973.
    71. G.B. Schaffer and P.G. McCormick, Applied Physics Letters, 55 (1989) 45.
    72. P.S. Gilman and J.S. Benjamin, Annual Review of Materials Research, 13 (1983) 279.
    73. H. Hashimoto and R. Watanabe, Materials Science Forum, 89 (1992) 88.
    74. M.S. El-Eskandarany, K. Aoki, H. Itoh and K. Suzuki, Journal of the Less-Common Metals, 169 (1991) 235.
    75. M.S. El-Eskandarany, Journal of Alloys Compounds, 305 (2000) 219.
    76. J.S. Benjamin and T.E. Volin, Metallurgical Transactions 5 (1974) 1929.
    77. A.W. Weeber and H. Bakker, Physica B, 153 (1988) 93.
    78. C. Suryanarayana, Progress in Materials Science, 46 (2001) 1.
    79. C. Politis, Physica B, 135 (1985) 286.
    80. R.B. Schwarz, R.R. Petrich, and C.K. Saw, Journal of Non-Crystal Solids, 76 (1985) 281.
    81. E. Hellstern and L. Schultz, Applied Physics Letters, 48 (1986) 124.
    82. A.W. Weeber, K. van der Meer, H. Bakker, F.R. de Boer, B.J. Thijsse, and J.F. Jongste, Journal of Physics F, 16 (1986) 1897.
    83. A.W. Weeber, A.J.H. Wester, W.J. Haag, and H. Bakker, Physica B, 145 (1987) 349.
    84. M.S. El-Eskandarany, Mechanical Alloying For Fabrication of Advanced Engineering Materials, Noyes Publications, William Andrew Publishing, Norwich, New York, U. S. A. (2001).
    85. M.S. El-Eskandarany, K. Aoki and K. Suzuki, Journal of Alloys Compounds, 186 (1992) 15.
    86. M.P. Henaff, C.Colinet, A. Pasturel and K. H. J. Buschow, Journal of Applied Physics, 56 (1984) 307.
    87. W.L. Johnson, Progress in Materials Science, 30 (1986) 81.
    88. F.R. de Boer, R. Boom, W.C. M. Mattens, A.R. Miedema and A.K. Niessen, Cohesion in Metals Transition Metal Alloys, North Holland, Amsterdom, Oxford New York, Tokyo (1988).
    89. H. Yang and H. Bakker, Journal of the Less-Common Metals, 140 (1988) 299.
    90. E.A. Stern, Physical Review B, 10[8] (1974) 3027
    91. F.W. Lytle, D.E. Sayers, and E.A. Stern, Physical Review B, 11[12] (1975) 4825
    92. E.A. Stern, D.E. Sayers and F.W. Lytle, Physical Review B, 11[12] (1975) 4836
    93. D.C. Koningsberger and R. Prins, ed., X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, in Chemical Analysis 92, John Wiley & Sons, 1988.
    94. E.A. Stern and S.M. Heald, E.E. Koch ed., Basic Principles and Applications of EXAFS, Chapter 10 in Handbook of Synchrotron Radiation, pp 995–1014., North-Holland, 1983
    95. International XAFS Society:http://ixs.iit.edu/
    96. R.B. Schwarz and C.C. Koch, Applied Physics Letters, 49 (1986) 146.
    97. O.N. Senkov and D.B. Miracle, Materials Research Bulletin, 36 (2001) 2183.
    98. J.S. Reed, Introduction to the Principles of Ceramic Processing, John Wiley & Sons, New York (1988) 185.
    99. E. Hellstern, H.J. Fecht, Z. Fu and W.L. Johnson, Journal of Applied Physics, 65 (1989) 305.
    100. G.Y. Ke, S.K. Chen, T. Hsu, J.W. Yeh, Ann. Chim. Sci. Mat., 6 (2006) 669.
    101. A. Takeuchi and A. Inoue, Materials Transactions JIM, 41 (2000) 1372.
    102. G. Cocco, S. Enzo, N.T. Barrett and K.J. Robert, Physical Review B, 45 (1992) 7066.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE