簡易檢索 / 詳目顯示

研究生: 鍾尚穎
Shang-Ying Chung
論文名稱: 新型20吋奈米碳管背光模組驅動系統之分析與製作
Analysis and Implementation of A Novel Driving System for 20-inch Carbon Nanotube Backlight Unit
指導教授: 潘晴財
Ching-Tsai Pan
黃智方
Chih-Fang Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 84
中文關鍵詞: 奈米碳管背光模組效率
外文關鍵詞: carbon nanotube, backlight unit, efficiency
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    奈米碳管背光模組(Carbon Nanotube Backlight Unit),具有高亮度、無汞蒸氣、高色彩飽和度與低表面溫度等特性,為一可以大幅解決冷陰極管諸多缺陷的新型平面光源(Flat Surface Lighting source),可說甚有機會成為未來大尺寸液晶顯示器主流背光源(Back-Lighting Source)。然而目前其中之奈米碳管背光面板尚有發光效率(Luminescent Efficiency)較低之問題,因此本論文主要之研究乃聚焦於探討奈米碳管背面板之發光特性,同時提出一新型驅動策略以提升其發光效率,最後並完成奈米碳管背光模組所需之閘極驅動電路與陽極高壓直流電源。
      本論文主要貢獻有四點,第一,針對工研院最新研發之20吋面板結構與螢光粉基礎下,建立一螢光粉發光動態模型等效電路以利後續模擬分析用。第二,利用此螢光粉發光動態模型,可以嘗試各種不同型式之驅動電壓進行模擬,預測其發光情形,進而發展出一更有效利用螢光粉殘光效應之新型驅動策略,對於背光面板發光效率提升效益至為顯著。第三,由於奈米碳管背光模組之場發射電流與閘級驅動電壓呈非線性特性,以本論文製作之雛型為例,採用脈波驅動時,會造成陽極電壓自4kV下降至3.5kV,會影響發光強度,而採用本論文所提之三角波驅動方法,則僅約自4kV下降至3.95kV,大幅改善了脈波驅動造成陽極電壓驟降之缺點。最後第四點,作者並實際製作,完成驅動奈米碳管背光面板所需之雛型電路以驗證所提新型驅動策略之有效性。實測結果顯示本論文所提驅動策略之發光效率較利用目前最佳之脈波驅動方法高出74%。


    ABSTRACT

    Carbon nanotube backlight unit (CNT-BLU) is one of the categories of flat surface back-lighting source, which have been developed recently. Comparing with cold cathode fluorescent lamp (CCFL) backlight unit, CNT-BLU has the advantages of high brightness, mercury free, superior color performance and low surface temperature etc.. These merits render the CNT-BLU rather attractive as a backlight unit candidate. However, so far, the luminescent efficiency of CNT-BLUs is not good enough. Hence, the major motivation of this research is trying to further increase the luminescent efficiency of CNT-BLUs.
    Basically, the major contributions of this thesis may be summarized as follows. First, an asymmetrical dynamic model of the luminescent property of phosphors is first derived. Second, the derived model is then used to investigate various driving voltage waveforms to further improve the luminescent efficiency by simulations. Then, based on the simulation results, a novel driving strategy is proposed to fully exploit the persistence effect of phosphors for a 20-inch CNT-BLU. Finally, a prototype of the proposed driving system is implemented and tasted. Experimental results show that the resulting illuminative efficiency can be increased by more than 74% as compared with the most recent pulse mode driving strategy.

    目 錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 本論文之貢獻 3 1.4 本論文之內容概述 4 第二章 奈米碳管背光模組系統簡介 5 2.1 前言 5 2.2 背光模組簡介 6 2.3 場發射基本原理與應用發展簡介 11 2.4 奈米碳管背光模組結構與工作原理 15 第三章 新型高效率背光模組驅動策略 20 3.1 前言 20 3.2 螢光粉發光動態模型建立 21 3.3 新型高效率驅動策略 36 第四章 陽極高壓電源系統設計 43 4.1 前言 43 4.2 諧振電源轉換器分析 43 4.3 全橋LCC諧振高壓直流轉換器 55 4.4 高壓變壓器與諧振電路設計考量 61 第五章 實體雛型製作與實驗結果 62 5.1 前言 62 5.2 閘極驅動電路製作 62 5.3 陽極高壓電源製作 64 5.4 實驗結果 70 第六章 結論 79 參考文獻 81 附錄 已發表論文 84

    參考文獻
    [1] C. C. Lee, B. N. Lin, M. C. Hsiao, Y. Y. Chang, W. Y. Lin, and L. Y. Jiang, “Development of CNT-FED by printing method,” SID’05 Digest, pp. 1716-1719, 2005.
    [2] T. H. Tsou, M. H. Lin, B. N. Lin, W. Y. Lin, Y. C. Jiang, C. H. Fu, L. Y. Chiang, Y. Y. Chang, M. C. Hsiao, and C. C. Lee, “Reflective structure for carbon nano-tube backlight unit,” IDW/AD’05 Technical Digest, pp. 1695-1696, 2005.
    [3] Y. C. Kim, E. H. Yoo, “Printed carbon nanotube field emitters for backlight applications,” Japanese Journal of Applied Physics, Vol. 44, No. 15, pp. L454-L456, 2005.
    [4] H. S. Yoo, W. Y. Sung, S. J. Yoon, Y. H. Kim, and S. K. Joo, “Novel triode-type field emission arrays and appropriate driving method for flat lamp using carbon nanofibers grown by plasma enhanced chemical vapor deposition,” Japanese Journal of Applied Physics, Vol. 46, No. 7A, pp. 4381-4385, 2007.
    [5] N. N. Chubun, A. G. Chakhovskoi, and C. E. Hunt, “Efficiency of cathodoluminescent phosphors for a field-emission light source application,” Journal of Vacuum Science & Technology, Vol. 21, pp. 1618-21, July 2003.
    [6] R. H. Fowler, and L. W. Nordheim, “Electron emission in intense electric fields,” Proceedings of the Royal Society of London, Vol. 119, pp. 173-181, 1928.
    [7] H. C. Cheng, R. L. Lai, Y. R. Chang, K. C. Lin, C. P. Juan, P. C. Chang, C. Y. Lee, and J. K. Shiu, “Improvement of luminescent uniformity via synthesizing the carbon nanotubes on a FE-TI co-deposited catalytic layer,” Japan Journal of Applied Physics, Vol. 46, pp. 863-866, 2007.
    [8] P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, “Carbon nanotube electronics,” Proceedings of the IEEE, Vol. 91, No. 11, Nov. 2003.
    [9] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling nanotubes: field emission from an atomic wire,” Sience, Vol. 269, pp. 1550-1553, Sept. 1995.
    [10] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58, Nov. 1991.
    [11] H. S. Jang, J. H. Kang, S. Lee, and D. Y. Jeon, “White light emission from a carbon nanotube field emitter backlight unit using two phosphors system,” IDW’06 Technical Digest, pp. 1825-1828, 2006.
    [12] T. W. Ebbesen, Carbon Nanotubes Preparation and Properties. CRC Press, Inc. 1997.
    [13] M. Nakamoto, H. Kominami, Y. Nakanishi , Y. Takigawa, Y. Ohgi, H. Hiraki, and M. Haba, “White color flat field emission lamps for high quality general lighting,” IDW/AD’05 Technical Digest, pp. 1997-1998, 2005.
    [14] C. C. Liang, C. N. Huang, B. N. Lin, C. H. Fu, T. H. Tsou, W. Y. Lin, M. H. Lin, and Y. S. Kuo, “A high efficiency and low power dynamical driving scheme for carbon nanotube backlight units,” IMID/IDMC'06, pp. 1202-1205, 2006.
    [15] C. C. Liang, C. N. Huang, Y. S. Kuo, B. N. Lin, C. H. Fu, T. H. Tsou, W. Y. Lin, and M. H. Lin, “A study on bank-wised driving schemes for a 20” carbon nanotube backlight unit,” IDW’06 Technical Digest, pp. 1829-1832, 2006.
    [16] F. T. Wakabayashi and C. A. Canesin, “An improved design procedure for LCC resonant filter of dimmable electronic ballasts for fluorescent lamps, based on lamp model,” IEEE Trans. on Power Electronics, Vol. 20, No. 5, pp. 1186-1196, Sept. 2005.
    [17] J. A. Sabatk, M. M. Jovanovic, F. C. Lee, and R. T. Gean, “Analysis and design-optimization of LCC resonant inverter for high-frequency AC distributed power system,” IEEE Trans. on Industrial Electronics, Vol. 42, No. 1, pp. 63-71, Jan. 1995.

    [18] H. I. Sewell, M. P. Foster, C. M. Bingham, D. A. Stone, D. Hente, and D. Howe, “Analysis of voltage output LCC resonant converters including boost mode operation,” IEE Proceedings of Electric Power Applications, Vol. 150, pp. 673-679, Nov. 2003.
    [19] J. Cardesin, J. M. Alonso, E. Lopez-Corominas, A. J. Calleja, J. Ribas, M. Rico-Secades, and J. Garcia, “Design optimization of the LCC parallel-series inverter with resonant current mode control for 250-W HPS lamp ballast,” IEEE Trans. on Power Electronics, Vol. 20, No. 5, pp. 1197-1204, Sept. 2005.
    [20] A. J. Gilbert, C. M. Bingham, D. A. Stone, and M. P. Foster, “Normalized analysis and design of LCC resonant converters,” IEEE Trans. on Power Electronics, Vol. 22, No. 6, pp. 2386-2402, Nov. 2007.
    [21] J. Cardesin, M. Alonso, E. L. Corominas, A. Calleja, J. Ribas, M. Rico-Secades, J. Garcia, “Small-signal analysis of a low-cost power control for LCC series-parallel inverters with resonant current mode control for HID lamps,” IEEE Trans. on Power Electronics, Vol. 20, No. 5, pp. 1205-1212, Sept. 2005.
    [22] I. Batarseh, R. Liu, C. Q. Lee, and A. K. Upadhyay, “Theoretical and experimental studies of the LCC type parallel resonant converter,” IEEE Trans. on Power Electronics, Vol. 5, NO. 2, pp. 140-150, April 1990.
    [23] D. W. Yoo, J. H. Kim, M. H. Ryu, B. K. Lee, H. G. Kim, “The state-of-the-art hybrid power supply for FED with carbon nanotube,” IEEE Power Electronics Specialists Conference, pp. 1386-1390, June 2007.
    [24] R. Gules, and N. Barbi, “A high efficiency isolated DC-DC converter with high-output voltage for TWTA telecommunication satellite applications,” IEEE Power Electronics Specialists Conference, pp.1982-1987, 2001
    [25] L. Yao, “Backlight & backlight components,” Display Search Taiwan FPD Conference, May 2007.
    [26] 林高照, 賴瑞霖, 鄭晃忠, “奈米碳管場發射顯示器元件技術,” 電子月刊第十二卷第八期, pp. 133-142, 2006.
    [27] X. Guo, and S. R. P. Silva, “A macro-modeling approach to integrate carbon nanotube field emission triode devices into circuit simulations,” IDW’06 Technical Digest, pp. 1871-1874, 2006.
    [28] 盧慶儒, “奈米場發射光源實現降低背光模組成本夢想,” http://tech.digitimes.com.tw, 2006.
    [29] 黃宣宜, “場發射顯示器技術現況與發展,” 光連雙月刊第三十九期, pp. 57-64, 2002.
    [30] 蔡錦福編著, 運算放大器原理與應用, 全華科技圖書股份有限公司, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE