簡易檢索 / 詳目顯示

研究生: 林士剛
Shih-kang Lin
論文名稱: 光電元件與構裝模組之界面穩定性與材料特性
Interfacial Stabilities and Materials Characterizaztions in Optoelectronic Devices and Packaging Modules
指導教授: 陳信文
Sinn-wen Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 300
中文關鍵詞: 相平衡液相線投影圖界面反應無鉛銲料構裝光電氮化銦鎵負型氮化鎵軟性電子錫鬚擴散電遷移效應歐姆接觸
外文關鍵詞: Sn, In, Cu, Ni, Phase equilibria, Liquidus projection, Interfacial reaction, Pb-free solder, Packaging, Optoelectroic, InxGa1-xN, n-GaN, Fflexible electronic, Sn whisker, Diffusion, Electromigration, Ohmic contact, V, Al, Ag
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Optoelectronic (OE) systems play important roles in advanced applications of various fields, such as energy-saving light source, solar cell, flat-panel display technology, wireless communication technology, etc. These OE systems are composed of OE devices and packaging modules which contain a large number of thin-film or bulk heterogeneous materials joints. The interfacial stabilities of the interfaces are crucial for the functionalities and reliabilities of the OE products. Metallurgical reactions in the thin-film and bulk joints are of essential importance in materials design and manufacture conditioning. The aim of the study is at the important materials systems in OE applications and to make efforts on evaluation of the interfacial stabilities. The materials systems investigated in the thesis are the interfacial reactions between thin Ni film and InxGa1-xN, V/Al/Ag Ohmic contacts to n-GaN, interfacial reactions in the Sn-In/Cu and Sn-In/Ni couples, electromigration effect upon the Sn-In/Cu interfacial reaction, and the Sn whisker formation on the thick pure Sn film. These interfacial problems are analyzed by using various materials characterization techniques and evaluated based on the knowledge of materials phase equilibria and transport. The mechanisms of phase transformations and morphological developments are proposed. In addition, the 250 oC isothermal section and liquidus projection of the Sn-In-Cu ternary system are experimentally determined in order to fulfill the lack of data in the literatures.


    光電系統(optoelectronic system)已被廣泛地應用於各式前瞻技術當中
    ,包括目前倍受重視的低耗能照明設備與發電裝置,如白光發光二極體(light emitting diode, LED)及太陽能電池(solar cell),以及平面顯示器與無線通訊技術等。這些光電系統中包含了大量的異質材料相接界面,包括各式功能性元件中的薄膜異質界面,以及構裝模組中的塊材接點。這些異質界面的穩定性直接決定了光電產品的功能性以及可靠度。適度的界面反應(interfacial reaction)可產生良好的歐姆接觸(Ohmic contact)於元件,以及可靠的電子接點於構裝模組中;而過度的反應則會造成元件失效以及接點破壞。因此,開發新穎光電材料與製程時,必須對系統中的薄膜與塊材界面反應有所了解。本研究探討的範圍涵蓋光電產品中重要的材料系統與其界面行為,包括光電元件中的薄膜界面:氮化銦鎵(InxGa1-xN)對鎳薄膜之反應、與釩/鋁/銀(V/Al/Ag)薄膜對負型氮化鎵(n-GaN)之歐姆接觸,以及光電構裝中之塊材界面:錫銦無鉛銲料(Pb-free solder)與銅、鎳界面之反應與電遷移效應(electromigration effect)、以及純錫厚膜之錫鬚(Sn whisker)生長。運用各式形態(morphology)、組成與結構之材料分析技術,配合材料相平衡與輸送的知識,對這些異質界面的相變化與形態發展進行討論,並提出反應的機制。此外,本研究同時以實驗方法測定錫-銦-銅三元系統之液相線投影圖(liquidus projection),與250度等溫橫截面圖(isothermal section),以補充文獻上之不足。

    ABSTRACT...................................................i 摘要......................................................ii 致謝.....................................................iii LIST OF FIGURES...........................................vi LIST OF TABLES............................................xx CHAPTER I: INTRODUCTION....................................1 I.1 Optoelectronics Systems and Their Applications.........1 I.2 Optoelectronic Packaging and Soldering Technology......4 I.3 Lead (Pb) Free Solders and Sn-In Based Alloys..........8 I.4 Frame Structure of the Proposal.......................10 CHAPTER II: PHASE EQUILIBRIA AND LIQUIDUS PROJECTION OF THE SN-IN-CU TERNARY SYSTEM...................................11 II.1 Literature Review....................................13 II.1-1 Phase Equilibria and Liquidus Projection...........13 II.1-2 Sn-In Binary Phase Diagram.........................16 II.1-3 Cu-In Binary Phase Diagram.........................18 II.1-4 Sn-Cu Binary Phase Diagram.........................23 II.1-5 Sn-In-Cu Isothermal Sections.......................27 II.1-6 Sn-In-Cu Liquidus Projection.......................30 II.2 Experimental Procedures..............................32 II.2-1 Alloy Preparation, Annealing, and Solidification...32 II.2-2 Analyses...........................................33 II.3 Results and Discussion...............................34 II.3-1 Sn-In-Cu Isothermal Section at 250 oC..............34 II.3-2 Sn-In-Cu Liquidus Projection.......................59 II.4 Summary..............................................82 CHAPTER III: INTERFACIAL REACTIONS IN THE SN-IN/CU AND SN-IN/NI COUPLES.............................................83 III.1 Literature Review...................................85 III.1-1 Diffusion in Solid................................85 III.1-2 Interfacial Reaction..............................87 III.1-3 Sn-In-Cu Isothermal Sections......................93 III.1-4 Sn-In/Cu Interfacial Reactions....................93 III.1-5 Sn-In-Ni Isothermal Sections......................94 III.1-6 Sn-In/Ni Interfacial Reactions....................95 III.2 Experimental Procedures.............................96 III.2-1 Reaction Couples Preparation......................96 III.2-2 Heat Treatments and Reaction Couple Analyses......98 III.3 Results and Discussion..............................99 III.3-1 DTA and the Solidus Temperature of Sn-20at.%In....99 III.3-2 Sn-20at.%In/Cu and Sn-20at.%In/Ni Interfacial Reactions at 160 oC......................................101 III.3-3 Sn-20at.%In/Ni Interfacial Reactions at 130 oC and 140 oC...................................................113 III.3-3 Sn-20at.%In/Ni Interfacial Reactions at 150 oC and 160 oC...................................................119 III.4 Summary............................................126 CHAPTER IV: ELECTROMIGRATION EFFECT UPON INTERFACIAL REACTIONS IN THE SN-IN/CU COUPLES........................127 IV.1 Literature Review...................................128 IV.1-1 Electromigration Effect...........................128 IV.1-2 Electromigration Effect in the Solder Joints......131 IV.2 Experimental Procedures.............................133 IV.2-1 Reaction Couples Preparation......................133 IV.2-2 Electrifying Experiments..........................133 IV.2-3 Reaction Couples Analyses.........................134 IV.3 Results and Discussion..............................136 IV.3-1 Sn-20at.%In/Cu Interfacial Reactions at 160 oC....136 IV.3-2 Sn-20at.%In/Cu Interfacial Reactions at 160 oC with current stressing. ......................................137 IV.3-3 Sn-20at.%In/Cu Interfacial Reactions at 250 oC....148 IV.3-3 Reaction Paths Shifting Under Current Stressing...150 IV.4 Summary.............................................154 CHAPTER V: MECHANICAL DEFORMATION INDUCED-TIN WHISKER FORMATION................................................155 V.1 Literature Review....................................158 V.1-1 Sn Whisker Formation...............................158 V.1-2 Driving Forces of Sn Whiskers Formation............160 V.2 Experimental Procedures..............................170 V.2-1 Pb-Free Thin Films Design..........................170 V.2-2 Compression Tests..................................171 V.2-3 Compressed Film Analyses...........................172 V.3 Results and Discussion...............................173 V.3-1 As-Prepared Thin Films: Six Conditions.............173 V.3-2 900 □m Diameter ZrO2 Ball Indenters: Constant Compressive Force........................................178 V.3-3 900 □m Diameter ZrO2 Ball Indenters: Microstructure Development..............................................193 V.3-4 900 □m Diameter ZrO2 Ball Indenters: Constant Compressed Strain........................................203 V.3-5 Tetrahedron Diamond Indenters: Constant Compressive Force............. ......................................210 V.4 Summary.............................................214 CHAPTER VI: INTERFACIAL REACTIONS BETWEEN NICKEL THIN FILM AND INDIUM GALLIUM NITRIDE...............................215 VI.1 Literature Review...................................217 VI.1-1 Phase diagrams of the Ni-In-Ga-N Related Systems..217 VI-1-2 Interfacial Reactions between Ni Thin Film and InxGa1-xN................................................226 VI.2 Experimental Procedures.............................229 VI.2-1 Ni/InxGa1-xN Contact Preparation..................229 VI.2-2 Thermo-treatments.................................230 VI.2-3 Metallurgical and Compositional Analysis..........231 VI.3 Results and Discussion..............................233 VI.3-1 Ni/In0.25Ga0.75N – As-deposited..................233 VI.3-2 Ni/In0.16Ga0.84N – 600 oC-60s....................235 VI.3-3 Ni/In0.16Ga0.84N – 700 oC-60s....................239 VI.3-4 Ni/In0.16Ga0.84N – 700 oC-120s...................244 VI.3-5 Ni/In0.16Ga0.84N – 700 oC-1h.....................249 VI.3-6 Ni/In0.16Ga0.84N – 750 oC-60s....................250 VI.3-7 Surface Morphology of the In0.16Ga0.84N Epitaxial Film....................... .............................252 VI.3-8 Possible Consequences of the Composition Shift in InxGa1-xN...............................................253 VI.4 Summary............................................254 CHAPTER VII: V/AL/AG OHMIC CONTACT TO N-TYPE GALLIUM NITRIDE..................................................255 VII.1 Literature Review..................................256 VII.1-1 Metal/Semiconductor Interfaces...................256 VII.1-2 Schottky Barriers................................257 VII.1-3 Ohmic Contacts...................................260 VII. 1-4 Ohmic Contacts to n-GaN.........................261 VII.2 Experimental Procedures............................263 VII.2-1 Contact Preparation and Thermo-treatment.........263 VII.2-2 Metallurgical Analysis and Electrical Measurement..............................................264 VII.3 Results and Discussion.............................266 VII.3-1 Gap Spacing Measurement and Calibration..........266 VII.3-2 Morphological Examination........................268 VII.3-3 Electrical Examination...........................271 VII.4 Summary............................................273 CHAPTER VIII: SUMMARY AND SUGGESTED FUTURE WORKS.........274 REFERENCES...............................................279 PUBLICATIONS LIST........................................290 ACADEMIC HONORS..........................................295

    1. B. E. A. Saleh and M. C. Teuch: “Fundamentals of Photonics,” John Wiley & Sons, New York, (1991).
    2. A. R. Mickelson, N. R. Basavanhally, and Y.-C. Lee eds., “Optoelectronic packaging,” John Wiley & Sons, New York, (1997).
    3. D. Frear, Journal of Materials, June, pp. 40, (1994).
    4. R. A. Boudreau, Journal of Materials, June, pp. 41-44, (1994).
    5. Y.C. Lee and N. Basavanhally, Journal of Materials, June, pp. 45-50, (1994).
    6. R.F. Carson, P.K. Seigal, D.C. Craft, and M.L. Lovejoy, Journal of Materials, June, pp. 51-55, (1994).
    7. P. Mueller and B. Valk, IEEE Electronic Components and Technology Conference, Vol. 18, pp. 5-9, (2000).
    8. L.-H. Su, Y.-W. Yen and S.-W. Chen, Metallurgical and Materials Transactions B, Vol. 28B, pp. 927-934, (1997).
    9. S.-W. Chen and Y.-W. Yen, Journal of Electronic Materials, Vol. 30(9), pp. 1133-1137, (2001).
    10. C.-Y. Huang and S.-W. Chen, Journal of Electronic Materials, Vol. 31(2), pp. 152-160, (2002).
    11. W.-C. Liu, S.-W. Chen and C.-M. Chen, Journal of Electronic Materials, Vol. 27(1), L5-L8, (1998).
    12. S.-W. Chen, C.-M. Chen, and W.-C. Liu, Journal of Electronic Materials, Vol. 27(11), pp. 1193-1198, (1998).
    13. C.-M. Chen and S.-W. Chen, Journal of Electronic Materials, Vol. 28(7), pp. 902-906, (1999).
    14. C.-M. Chen and S.-W. Chen, Journal of Electronic Materials, Vol. 29(10), pp. 1222-1228, (2000).
    15. C.-M. Chen and S.-W. Chen, Journal of Applied Physics, Vol. 90(3), pp. 1208-1214, (2001).
    16. C.-M. Chen and S.-W. Chen, Acta Materialia, Vol. 50(9), pp. 2461-2469, (2002).
    17. S.-W. Chen and C.-M. Chen, Journal of Materials, Vol. 55(2), pp.62-67, (2003).
    18. C.-M. Chen and S.-W. Chen, Journal of Materials Research, Vol. 18 (6), pp. 1293-1296, (2003).
    19. Official Journal of the European Union, 13.2.2003 (2003) L 37/19.
    20. “Lead-free assembly projects”, National Electronics Manufacturing Initiatives, http://www.nemi.org/projects/ese/lf_assembly.html (1999).
    21. G. Humpston and D. M. Jacobson, Advanced Materials & Processes, April, pp.45-47, (2005).
    22. K. Yasuda, J. M. Kim, M. Yasuda, K. Fujimoto, Materials Transactions, Vol. 45(3), pp. 799-805, (2004).
    23. J. L. Freer and J. W. Morris, Jr., Journal of Electronic Materials, Vol. 21(6), pp. 647-652, (1992).
    24. C.-Y. Huang and S.-W. Chen, Journal of Electronic Materials, Vol. 31(2), pp. 152-160, (2002).
    25. K.-L. Lin and C.-J. Chen, International Journal of Microcircuits Electronic Packaging, Vol. 20, pp. 46-50, (1997).
    26. T. H. Chuang, C. L. Yu, S. Y. Chang, and S. S. Wang, Journal of Electronic Materials, Vol. 31(6), pp. 640-645, (2002).
    27. R. J. K. Wassink, in "Soldering in Electronics", 2nd edition, (Electrochemical Publications, Isle of Man, 1989).
    28. M. Abtew and G. Selvaduray, Journal of Materials Science and Engineering R, Vol. 27, pp. 95, (2000).
    29. T. Laurila, V. Vuorinen and J. K. Kivilahti, Journal of Materials Science and Engineering R, Vol. 49 pp. 1, (2005).
    30. D. R. Frear, W. B. Jones and K. R. Kinsman, in "Solder Mechanics: A state of the art assessment", Minerals, Metals & Materials Society, Warrendale, PA, (1991).
    31. C. R. Kao, Journal of Materials, Vol. 54, pp.44, (2002).
    32. F. N. Rhines: “Phase diagrams in metallurgy: their development and application,” McGraw-Hill, (1956).
    33. C.E.T. White and H, Okamoto: “Phase diagrams of indium alloys and their engineering application”, pp. 255-257, (1992).
    34. S.-W. Chen, C.-H. Wang, S.-K. Lin and C.-N. Chiu, Journal of Materials Science: Materials in Electronics, Vol. 18(1-3), pp. 19-37, (2007).
    35. P. R. Subramanian and D. E. Laughlin, Bulletin of Alloy Phase Diagrams, Vol. 10(5), 554, (1989).
    36. A. Bolcavage, S.-W. Chen, C. R. Kao, and Y. A. Chang, Journal of Phase Equilibria, Vol. 14(1), pp. 14-30, (1993).
    37. H. Okamoto, Journal of Phase Equilibria, Vol. 15(2), pp. 226-227, (1994).
    38. M. Elding-Pontén, L. Stenberg, and S. Lidin, Journal of Alloys and Compounds, Vol. 261, pp. 162-171, (1997).
    39. Z. Bahari, E. Dichi, B. Legendre, and J. Dugue, Thermochimica Acta, Vol. 401, pp. 131-138, (2003).
    40. N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, Vol. 11, pp. 278-287, (1990).
    41. M. Hansen and K. Anderko: “Constitution of Binary Alloys”, McGraw-Hill, New York (1958).
    42. A.-K. Larsson, L. Stenberg, and S. Lidin, Acta Crystallogr., Sect. B: Struct. Sci, Vol. B50, pp. 636-643, (1994).
    43. W. Köster, T. Godecke, and D. Heine, Zeitschrift fur Metallkunde, Vol. 63, H.12, pp. 802-807, (1972).
    44. P. Villars, A. Prince, and H. Okamoto, Ternary Alloy Phase Diagram, Vol. 7, pp. 9605-9613, (1995).
    45. X. J. Liu, H. S. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Journal of Electronic Materials, Vol. 30(9), pp. 1093-1103, (2001).
    46. A. Gangulee, G. C. Das, and M. B. Bever, Metallurgical Transactions, Vol. 4(9), pp. 2063-2066, (1973).
    47. E. A. Owen and J. Iball, Journal of the Institute of Metals, Vol. 57, pp. 267, (1935).
    48. E. A. Owen and E. C. Williams, Journal of the Institute of Metals, Vol. 58, pp. 283, (1936).
    49. C. Haase and F. Pawlek, Zeitschrift fur Metallkunde, Vol. 28, pp.473, (1936).
    50. S. T. Konobeevsky and V. P. Tarasova, Acta Physicochim. U.R.S.S., Vol. 6, pp. 781, (1937).
    51. M. Hamasumi and K. Morikawa, Nippon Kinzoku Gakkai-Si, Vol. 2, pp. 39, (1938).
    52. C. C. Wang and M. Hansen, Transactions of the American institute of Mining and Metallurgical Engineers, Vol. 191(12), pp. 1212, (1951).
    53. M. Hansen, “Constitution of binary alloys”, 2nd ed., McGraw-Hill, New York, pp. 633-638, (1958).
    54. M.C. Flemings, Solidification Progressing, McGraw-Hill, New York, NY, (1974).
    55. D. Frear, D. Grivas, and J.W. Morris Jr., Journal of Electronic Materials, Vol. 16, pp. 181, (1987).
    56. K.-S. Kim, S.-H. Huh, and K. Suganuma, Journal of Alloys and Compounds, Vol. 352, pp. 226, (2003).
    57. R.A. Gagliano and M.E. Fine, Journal of Materials, Vol. 53, pp. 33, (2001).
    58. P.T. Vianco, P.F. Hlava, and A.C. Kilgo, Journal of Electronic Materials, Vol. 23, pp. 583, (1994).
    59. T. Velikanova, M. Turchanin, and O. Fabrichnaya, Non-Ferrous Metal Systems. Part 3, ed. G. Effenberg and S. Ilyenko, (Springer-Verlag Berlin Heidelberg, 2007), pp. 249-273.
    60. S.-W. Chen, C.-C. Huang, and J.-C. Lin, Chemical Engineering Science, Vol. 50, pp. 417, (1995).
    61. S.-W. Chen and C.-C. Huang, Acta Materialia, Vol. 44, pp. 1955, (1996).
    62. S.-C. Jeng and S.-W. Chen, Acta Materialia, Vol. 45, pp. 4887, (1997).
    63. Y. Zuo and Y.A. Chang, Materials Science Forum, Vol. 215, pp. 141, (1996).
    64. K.-W. Moon, W.J. Boettinger, U.R. Kattner, C.A. Handwerker, and D.-J. Lee, Journal of Electronic Materials, Vol. 30, pp. 45, (2001).
    65. S.-L. Chen and S.-W. Chen, private communication (2007).
    66. A. Rahn, "The Basics of Soldering", John Wiley & Sons, New York, pp. 29-30, (1993).
    67. C. Wagner, Zeitschrift fur Anorganische und Allgemeine Chemie, Vol. 236, pp. 320, (1938).
    68. J. B. Clark, Transactions of the Matallurgical Society of AIME, Vol. 227, pp. 1250-1251.
    69. K. N. Tu, J. W. Mayer, and L. C. Feldman: “Electronic thin film science: for electrical engineers and materials scientists”, Macmillan, New York, (1992).
    70. D. A. Porter and K. E. Easterling: “Phase transformation in metals and alloys,” Nelson Thornes Ltd, U. K., (2001).
    71. P. Shewmon: “Diffusion in solids,” TMS, Warrendale PA, (1989).
    72. A. D. Romig, Jr., F. G. Yost, and P. F. Hlava, Microbeam Analysis-1984, eds, A. D. Romig, Jr., and J. I. Goldstein, San Francisco Press, pp. 87, (1984).
    73. P. T. Vianco, P. F. Hlava, and A. C. Kilgo, Journal of Electron. Materials, Vol. 23, pp. 583, (1994).
    74. T. H. Chuang, C. L. Yu, S. Y. Chang, and S. S. Wang, Journal of Electronic Materials, Vol. 31, pp. 640, (2002).
    75. S. Sommadossi, W. Gust and E. J. Mitteneijer, Journal of Materials Chemistry and Physics, Vol. 77, pp. 924, (2003).
    76. D.-G. Kim and S.-B. Jung, Journal of Alloys and Compounds, Vol. 386, pp. 1515, (2005).
    77. W. Burkhardt and K. Schubert, Zeitschrift fur MetaIlkunde, Vol. 50, pp. 442, (1959).
    78. M. K. Bhargava and K. Schubert, Zeitschrift fur MetaIlkunde, Vol. 67, pp. 318, (1976).
    79. S. K. Shadangi, M. Singh, S. C. Panda, and S. Bhan, Indian Journal of Technology, Vol. 24, pp. 105, (1986).
    80. D.-G. Kim and S.-B. Jung, Journal of Electronic Materials, Vol. 33, pp. 1561 (2004).
    81. T. H. Chuang, K. W. Huang and W. H. Lin, Journal of Electronic Materials, Vol. 33, pp. 374, (2004).
    82. P. J. Kay and C. A. Mackay, Transaction of the institute of metal finishing, Vol. 54, pp. 68-74, (1976).
    83. C. Schmetterer, H. Flandorfer, K. W. Richter, U. Saeed, M. Kauffman, P. Roussel, and H. Ipser, Intermetallics, Vol. 15(7), pp. 869-884, (2007).
    84. H. Okamoto, Journal of Phase Equilibria, Vol. 24(4), pp. 379, (2003).
    85. V. B. Fiks, Soviet Physics – Solid State, Vol. 1, pp. 14-28, (1959).
    86. H. B. Huntington and A. R. Grone, Journal of Physics and Chemistry of Solids, Vol. 20, pp. 76-87, (1961).
    87. C. Bosvieux and J. Friedel, Journal of Physics and Chemistry of Solids, Vol. 23, pp. 123-136, (1962).
    88. R. S. Sorbello, Journal of Physics and Chemistry of Solids, Vol. 34, pp. 937-950, (1973).
    89. H. B. Huntington, in "Diffusion in Solids: Recent Developments", edited by A. S. Nowick and J. J. Burton, Academic Press, New York, pp. 303-352, (1975).
    90. T. Y. Lee, K. N. Tu, D. R. Frear, Journal of Applied Physics, Vol. 90, pp. 4502, (2001).
    91. R. Chopra, M. Ohring, and R. S. Oswald, Thin solid films, Vol. 94, pp. 279-288, (1982).
    92. J. Goerlich, G. Schmitz and K.-N. Tu, Applied Physics Letters, Vol. 86, pp. 053106-1 (2005).
    93. C. A. Harper, Electronic Packaging and Interconnection Handbook, third edition, McGraw-Hill, (2000).
    94. C. F. Coombs, Jr., Printed Circuits Handbook, fifth edition, McGraw-Hill, (2001).
    95. A. Nathan and B. R. Chalamala, Proceedings of the IEEE, Vol. 93(7), pp.1235-1238, (2005).
    96. A. Nathan and B. R. Chalamala, Proceedings of the IEEE, Vol. 93(8), pp.1391-1393, (2005).
    97. http://www.jae-europe.com/
    98. http://www.sony.co.jp/
    99. G. T. Galyon, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 28(1), pp. 94-122, (2005).
    100. W. J. Choi, G. Galyon, K. N. Tu, and T. Y. Lee: “The structure and kinetics of tin-whisker formation and growth on high tin content finishes,” in Handbook of lead-free solder technology for microelectronic assemblies, K. J. Puttlitz and K. A. Stalter eds., Marcel Dekker, Basel NY, pp. 851-914, (2004)
    101. B.-Z. Lee and D. N. Lee, Acta Metarialia, Vol. 46(10), pp. 3701-3714, (1998).
    102. M. Dittes, P. Oberndorff, P. Crema and P. Su, AIP Conference Proceedings, Vol. 817 (Stress-induced phenomenon in metallization), pp. 348-359, (2006).
    103. K. N. Tu, J. O. Suh and Albert T. Wu, Materials Transactions, Vol. 46(11), pp. 147-163, (2005).
    104. W. J. Boettinger, C.E. Johnson, L. A. Bendersky, K.-W. Moon, M. E. Williams, and G. R. Stafford, Acta Metarialia, Vol. 53, pp. 5033-5050, (2005).
    105. K. N. Tu and J. C. M. L, Materials Science and Engineering A, Vol. 409, pp. 131-139, (2005).
    106. P. Su, M. Ding, and S. Chopin, Proceedings of Electronic Components and Technology Conference, pp. 434-440, (2005).
    107. W. Zhang and F. Schwager, Journal of the Electrochemical Society, Vol. 153(5), pp. C337-C343, (2006).
    108. K.-S. Kim, C.-H. Yu, and J.-M. Yang, Thin Sold Films, Vol. 504, pp. 350-354, (2006).
    109. K.-S. Kim, C.-H. Yu, and J.-M. Yang, Microelectronics Reliability, Vol. 46(7), pp. 1080-1086, (2006).
    110. K.-S. Kim, T. Matsuura and K. Suganuma, Journal of Electronic Materials, Vol. 35(1), pp.41-47, (2006).
    111. R. M. Fisher, L. S. Darken, and K. G. Carroll, Acta Metallurgica, Vol. 2(3), pp. 368-372, (1954).
    112. C. H. Pitt and R. G. Henning, Journal of Applied Physics, Vol. 35, pp. 459-460, (1964).
    113. K. N. Tu and R. D. Thompson, Acta materialia, Vol. 30, pp. 947, (1982).
    114. W. Zhang, A. Egli, F. Schwager, and N. Brown, IEEE Transactions on Electronic Packaging Manufacturing, Vol. 28(1), pp. 85-93, (2005).
    115. M. Dittes, P. Oberndoff, P. Crema, and V. Schroeder, Proceedings of 2003 Electronic Packaging Technology Conference, pp. 183-188, (2003).
    116. M. Dittes, P. Oberndoff, and L. Petit, Proc. 53. Electronic Components & Technology Conference (ECTC), New Orleans, pp. 822-826, (2003).
    117. T. Teshigawara, T. Nakata, K. Inoue, and T. Watanabe, Scripta Materialia, Vol. 44, pp. 2285-2289, (2001).
    118. W. R. Runyan, “Silicon Semiconductor Technology”, MiGraw-Hill, New York, (1965).
    119. B. Monemar and G. Pozina, Progress in Quantum Electronics, Vol. 24(6), pp. 239-290, (2000).
    120. B. Monemar, Journal of Materials Science-Materials in Electronics, Vol. 10(4), pp. 227-254, (1999).
    121. I. Akasaki and H. Amano, Japanese Journal of Applied Physics Part 1-Regular Papers, Short Notes, & Review Papers, Vol. 36(9A), pp. 5393-5408, (1997).
    122. S. Keller and S. P. Denbaars, Current Opinion in Solid State & Materials Science, Vol. 3(1), pp. 45-50, (1998).
    123. D. D. Koleske, A. E. Wickenden, R. L. Henry, W. J. DeSisto, and R. J. Gorman, Journal of Applied Physics, Vol. 84(4), pp. 1998-2010, (1998).
    124. S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, A. H. Onstine, B. P. Gila, F. Ren, B. Lou, and J. Kim, Materialstoday, Vol. 5(6), pp. 24-31, (2002).
    125. T. Mimura, Japanese Journal of Applied Physics Part 1-Regular Papers, Short Notes, & Review Papers, Vol. 44(12), pp. 8263-8268, (2005).
    126. Z. F. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, Applied Physics Letters, Vol. 68(12), pp. 1672-1674, (1996).
    127. S. N. Mohammad, Journal of Applied Physics, Vol. 95(12), pp. 7940-7953, (2004).
    128. J. D. Guo, F. M. Pan, M. S. Feng, R. J. Guo, P. F. Chou, and C. Y. Chang, Journal of Applied Physics, Vol. 80(3), pp. 1623-1627, (1996).
    129. A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang, and I. Adesida, Journal of Electronic Materials, Vol. 27(4), pp. 255-260, (1998).
    130. S.Y. Lee and P. Nash, “Phase Diagrams of Binary Nickel Alloys”, P. Nash ed., ASM, Materials Park, OH, pp. 133, (1991).
    131. T. Ikeda, Y. Nose, T. Korata, H. Numakura, M. Koiwa, Journal of Phase Equilibria, Vol. 20(6), pp. 626-630, (1999).
    132. R. Ducher, R. Kainuma, K. Ishida, Intermetallics, Vol. 15(2), PP. 148-153, (2007).
    133. H. Okamoto, Journal of Phase Equilibria and Diffusion, Vol. 29(3), pp. 296, (2008).
    134. M. F. Singleton and P. Nash, “Phase Diagrams of Binary Nickel Alloys”, P. Nash, Ed., ASM International, Materials Park, OH, pp. 177-181, (1991).
    135. P. Durussel, G. Burri, P. Feschotte, Journal of Alloys and Compounds, Vol. 257(1-2), pp. 253-258, (1997).
    136. P. Waldner and H. Ipser, Intermetallics, Vol. 10(5), pp. 485-491, (2002).
    137. H. Okamoto, Journal of Phase Equilibria, Vol. 29(3), pp. 296, (1999).
    138. T. J. Anderson and I. Ansara, Journal of Phase Equilibria, Vol. 12, pp. 64-72, (1991).
    139. H. Okamoto, Journal of Phase Equilibria and Diffusion, Vol. 27(5), pp. 545-546, (2006).
    140. R. D. Jones and K. Rose, CALPHAD, Vol. 8, pp. 343, (1984).
    141. P. Franke, D. Neuschütz, and Scientific Group Thermodata Europe (SGTE), “Landolt-Börnstein - Group IV Physical Chemistry, Binary Systems. Part 4: Binary Systems from Mn-Mo to Y-Zr”, Springer, Berlin Heidelberg, pp. 1-2, (2006).
    142. D. Swenson and Y. A. Chang, Journal of Phase Equilibria, Vol. 16(6), pp. 508-515, (1995).
    143. J. Grobner, R. Wenzel, G. G. Fischer, and R. Schmid-Fetzer, Journal of Phase Equilibria, Vol. 20(6), pp. 615-625, (1999).
    144. J. D. Guo, F. M. Pan, M. S. Feng, R. J. Guo, P. F. Chou, and C. Y. Chang, Journal of Applied Physics, Vol. 80, pp. 1623–1627, (1996).
    145. Q. Z. Liu, L. S. Yu, F. Deng, and S. S. Lau, Journal of Applied Physics, Vol. 84, pp. 881–885, (1998).
    146. H. S. Venugopalan, S. E. Mohney, B. P. Luther, S. D. Wolter, and J. M. Redwing, Journal of Applied Physics, Vol. 82, pp. 650-654, (1997).
    147. V. M. Bermudez, R. Kaplan, M. A. Khan, and J. N. Kuznia, Physical Review B, Vol. 48, pp. 2436–2444, (1993).
    148. J.-K. Shue, Y.-K. Su, G.-C. Chi, W-C. Chen, C.-Y. Chen, C.-N. Huang, J.-M. Hong, Y.-C. Yu, C.-W. Wang, and E.-K. Lin, Journal of Applied Physics, Vol. 83(6), pp. 3172–3175, (1998).
    149. C.-Y. Hsu, W.-H. Lan, and Y.-S. Wu, Japanese Journal of Applied Physics Part 1-Regular Papers, Brief Communications, & Review Papers, Vol. 45(8A), pp. 6256-6258, (2006).
    150. A. F. Guillermet and K. Frisk, International Journal of Thermophysics, Vol. 12(2), pp. 417-431, (1991).
    151. M. Li, C.-R. Li, F.-M. Wang, and W.-J. Zhang, Materials Science and Engineering A, Vol. 422, pp. 316–320, (2006).
    152. M. A. Miller and S. E. Mohney, unpublished results, (2008).
    153. S. Mahanty, M. Hao, T. Sugahara, R. S. Q. Fareed, Y. Morishima, Y. Naoi, T. Wang, and S. Sakai, Materials Letters, Vol. 41, pp. 67-71, (1999).
    154. F. Lin, N. Xiang, P. Chen, S. Y. Chow, and S. J. Chua, Journal of Applied Physics, Vol. 103, pp. 043508, (2008).
    155. I.-H. Kim, H.-S. Park, Y.-J. Park, and T. Kim, Applied Physics Letters, Vol. 73(12), pp. 1634-1636, (1998).
    156. L. T. Romano, M. D. McCluskey, B. S. Krusor, D. P. Bour, C. Chua, S. Brennan, K. M. Yu, Journal of Crystal Growth, Vol. 189/190, pp. 33-36, (1998).
    157. T. Matsuoka, Journal of Crystal Growth, Vol. 189/190, pp. 19-23, (1998).
    158. A. Koukitu and H. Seki, Journal of Crystal Growth, Vol. 189/190, pp. 13-18, (1998).
    159. H. Chen and R. M. Feenstra, Physical Review Letters, Vol. 85(9), pp. 1902-1905, (2000).
    160. B. A. Hull, S. E. Mohney, U. Chowdhury, and R. D. Dupuis, the Journal of Vacuum Science and Technology B, Vol. 22(2), pp. 654-662, (2004).
    161. W. Schottky, Naturwissenschaften, Vol. 26, pp. 843, (1938).
    162. D. Steigerwald, S. Rudaz, H. Liu, R. S. Kern, W. Götz, and R. Fletcher, Journal of Materials, Vol. 49(9), pp. 18-23, (1997).
    163. S. E. Mohney and X. Lin, Journal of Electronic Materials, Vol. 25(5), pp. 811-818, (1996).
    164. M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. Morkoc, Applied Physics Letters, Vol. 64(8), pp. 1003-1005, (1994).
    165. M. W. Fay, G. Moldovan, N. J. Weston, P. D. Brown, I. Harrison, K. P. Hilton, A. Masterton, D. Wallis, R. S. Balmer, M. J. Uren, and T. Martin, Journal of Applied Physics, Vol. 96, pp. 5588, (2004).
    166. M. W. Fay, G. Moldovan, N. J. Weston, P. D. Brown, I. Harrison, J. C. Birbeck, B. T. Hughes, M. J. Uren, and T. Martin, Journal of Applied Physics, Vol. 92, pp. 94, (2002).
    167. F. M. Mohammed, L. Wang, I. Adesida, and E. Piner, Journal of Applied Physics, Vol. 100, pp. 023708, (2006).
    168. D. Selvanathan, F. M. Mohammed, A. Tesfayesus, and I. Adesida, the Journal of Vacuum Science and Technology B, Vol. 22, pp. 2409, (2004).
    169. J. Chen, D. G. Ivey, J. Bardwell, Y. Liu, H. Tang, and J. B. Webb, the Journal of Vacuum Science and Technology A, Vol. 20, pp. 1004, (2002).
    170. S. Kaciulis, L. Pandolfi, S. Viticoli, M. Peroni, and A. Passaseo, Applied Surface Science, Vol. 253, pp. 1055, (2006).
    171. K. O. Schweitz, P. K. Wang, S. E. Mohney, and D. Gotthold, Applied Physics Letters, Vol. 80, pp. 1954, (2002).
    172. E. D. Readinger, S. E. Mohney, T. G. Pribicko, J. H. Wang, K. O. Schweitz, U. Chowdhury, M. M. Wong, R. D. Dupuis, M. Pophristic, and S. P. Guo, Electronics Letters, Vol. 38, pp. 1230, (2002).
    173. J. H. Wang, S. E. Mohney, S. H. Wang, U. Chowdhury, and R. D. Dupuis, Journal of Electronic Materials, Vol. 33(1), pp. 1, (2004).
    174. M. A. Miller, S. E. Mohney, A. Nikiforov, G. S. Cargill III, and K. H. A. Bogart, Applied Physics Letters, Vol. 89, pp. 132114, (2006).
    175. A. N. Bright, P. J. Thomas, M. Weyland, D. M. Tricker, C. J. Humphreys, and R. Davies, Journal of Applied Physics, Vol. 89, pp. 3143, (2001).
    176. T. Ohki, M. Kanamura, T. Takahashi, T. Kikkawa, K. Joshin, and N. Hara, Physica Status Solidi, Vol. 2, pp. 2529, (2005).
    177. M. A. Miller and S. E. Mohney, Applied Physics Letters, Vol. 91, pp. 012103, (2007).
    178. M. A. Miller, S.-K. Lin, and S. E. Mohney, unpublished results, (2008).
    179. G. S. Marlow and M. B. Das, Solid-State Electronics, Vol. 25(2), pp. 91-94, (1982).
    180. M. A. Miller and S.-K. Lin, private communication, (2007).
    181. W. Gierlotka, S.-W. Chen, and S.-K. Lin, Journal of Materials Research, Vol. 22(11), pp. 3158-3165, (2007).
    182. W. Gierlotka, S.-K. Lin, and S.-W. Chen, unpublished results, (2008).
    183. H.-S. Liu, X.-J. Liu, Y. Cui, C-P. Wang, I. Ohnuma, R. Kainuma, Z.-P. Jin, and K. Ishida, Journal of Phase Equilibria, Vol. 23(5), pp. 409-415, (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE