簡易檢索 / 詳目顯示

研究生: 林庭毅
Lin, Ting Yi
論文名稱: 群眾感測平台之行動雲端軟體卸載
Mobile Cloud Offloading on Crowdsensing Platforms
指導教授: 徐正炘
Hsu, Cheng Hsin
口試委員: 李哲榮
Che Rung Lee
陳健
Chien Chen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 41
中文關鍵詞: 群眾感測行動裝置軟體卸載
外文關鍵詞: crowdsensing, mobile device, offloading
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文專注於利用軟體卸載的技術減少行動裝置的耗電或事件分析演算法的處理時間,以提升群眾感測系統的系統效能。事件分析演算法會經由使用者蒐集的感測器資料分析事件的發生與否,該分析可以透過卸載的技術卸載到雲端執行,以達到省電或提升速度的目的。由於軟體卸載的效益取決於許多因素,我們在本篇論文中提出了卸載決策演算法,結合當下的環境資訊,來決定是否將運算卸載到雲端。為了證明軟體卸載可實際用在現有的應用程式中,我們實作了一個工具幫助我們在沒有原始碼的情況下,分析其他第三方程式可以使用軟體卸載的部分,並修改該程式的安裝檔使其能夠使用軟體卸載。為了實際試驗軟體卸載對於群眾感測系統的影響,我們在本論文中實作了一個群眾感測雛形系統,並將軟體卸載的技術整合到該系統上進行測試。該雛型系統包含了(i)中控端、(ii)卸載伺服器及(iii)客戶端,並實作了2個事件分析演算法在系統中。

    我們的實驗顯示了我們提出的卸載決策演算法可以達到80%的準確率,極大的避免了因決策錯誤產生的額外成本。同時,我們也透過自行開發的工具分析、修改第三方的程式,並經由實際的使用修改後的程式,證實了卸載技術的確能夠使用在現有的第三方程式中。最後,我們使用整合了軟體卸載的群眾感測系統進行實驗,證實軟體卸載的確能改進群眾感測系統的效能。


    We focus on utilizing offloading to reduce the energy consumption of the mobile devices or the execution time of event analysis algorithms, and improve the system performance of crowdsensing systems. Event analysis algorithms analyze the sensory data that are collected by mobile users to determine whether events happen or not. The overhead of event analysis algorithms can be offloaded to cloud servers to achieve energy efficiency or better performance. Since offloading benefits depend on many factors, such as network latency and computation capability, we propose an offloading decision algorithm, which considers the context information to decide whether to offload the computation to cloud servers. To show that offloading can be used in existing applications, we develop an APK analysis tool to analyze the third-party applications. Without the source code, the tool determines which part of an application can be offloaded and modify the application to be offload version. To evaluate the impact of crowdsensing system with offloading, we implement a crowdsensing prototype system and integrate offloading technique into the system. The prototype system involves (i) a broker, (ii) offload servers, and (iii) clients. We implement 2 event analysis algorithms in the system.

    Our experiments show that our offloading decision algorithm improves the system performance through intelligently making offloading decisions, and the accuracy is up to 80\%. The high accuracy significantly reduces the penalty of suboptimal offloading decision. Moreover, by utilizing the APK analysis tool, we analyze and modify third-party applications. The results of offloading the third-party applications show that offloading can be used in existing third-party applications. Last, we conduct experiments with the crowdsensing prototype system with offloading and show that offloading improves the performance of the crowdsensing system.

    中文摘要 i Abstract ii 1 Introduction . . . . . . . . . . . . . . . . . . . . 1 1.1 Efficient Crowdsensing System With Offloading . . . 1 1.2 Offloading Applications To Cloud . . . . . . . . . 2 1.3 Contributions . . . . . . . . . . . . . . . . . . . 3 2 Related Work 4 2.1 Offloading . . . . . . . . . . . . . . . . . . . . 4 2.2 Crowdsensing . . . . . . . . . . . . . . . . . . . 5 2.3 Challenge in Large-scale Crowdsensing Systems . . . 6 3 Offloading Applications To Cloud 8 3.1 Architecture . . . . . . . . . . . . . . . . . . . 8 3.1.1 Overview . . . . . . . . . . . . . . . . . . . . 8 3.1.2 Context-aware Decision Algorithm . . . . . . . . 8 3.1.3 Energy Model . . . . . . . . . . . . . . . . . . 9 3.1.4 Profiler . . . . . . . . . . . . . . . . . . . . 9 3.1.5 Database . . . . . . . . . . . . . . . . . . . . 10 3.2 Problem Statement . . . . . . . . . . . . . . . . 10 3.2.1 Energy Measurement . . . . . . . . . . . . . . . 10 3.2.2 Application Modification without Source Code . . 13 3.3 Proposed Algorithm . . . . . . . . . . . . . . . . 14 3.4 Experiments . . . . . . . . . . . . . . . . . . . 17 3.4.1 Offloading Simulation . . . . . . . . . . . . . 17 3.4.2 Offloading Real Third-party Applications . . . . 22 4 Offloading Event Analysis Algorithms: Using IsCrowded and IsNoisy Events As Case Studies 24 4.1 Implementation . . . . . . . . . . . . . . . . . . 24 4.1.1 System Overview . . . . . . . . . . . . . . . . 24 4.1.2 Prototype Architecture . . . . . . . . . . . . . 25 4.2 Case Study . . . . . . . . . . . . . . . . . . . . 27 4.3 Evaluations . . . . . . . . . . . . . . . . . . . 29 4.3.1 Setup . . . . . . . . . . . . . . . . . . . . . 29 4.3.2 Results . . . . . . . . . . . . . . . . . . . . 30 5 Conclusion and FutureWork 35 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . 35 5.2 Future Work . . . . . . . . . . . . . . . . . . . 35 Bibliography 37 Symbol Table 41

    [1] 2012 U.S. wireless smartphone and traditional mobile phone satisfaction studies.
    http://www.jdpower.com/content/press-release/py6kvam/.
    [2] apktool. https://code.google.com/p/android-apktool/.
    [3] Mysql. http://www.mysql.com/.
    [4] Opencv. http://opencv.org/.
    [5] Powertutor. http://ziyang.eecs.umich.edu/projects/
    powertutor/.
    [6] V. Agarwal, N. Banerjee, and D. Chakraborty. Usense - a smartphone middleware for community sensing. In Proc. of IEEE International Conference on Mobile Data Management (MDM’13), pages 52–65, Milan, Italy, June 2013.
    [7] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy consumption in mobile phones: a measurement study and implications for network applications. In Proc. of ACM SIGCOMM Internet Measurement Conference (IMC’09), pages 280–293, Chicago, IL, USA, November 2009.
    [8] Y. Chon, N. Lane, F. Li, H. Cha, and F. Zhao. Automatically characterizing places with opportunistic crowdsensing using smartphones. In Proc. of ACM conference on Ubiquitous Computing (UbiComp’12), pages 481–490, Pittsburgh, Pennsylvania, September 2012.
    [9] B. Chun, M. Naik, S. Ihm, A. Patti, and P. Maniatis. Clonecloud: Elastic execution between mobile device and cloud. In Proc. of European Conference on Computer Systems (EuroSys’11), pages 181–194, Salzburg, Austrial, April 2011.
    [10] V. Coric and M. Gruteser. Crowdsensing maps of on-street parking spaces. In Proc. of IEEE International Conference on Distributed Computing in Sensor Systems
    (DCOSS’13), pages 115–122, Cambridge, MA, May 2013.
    [11] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl. Maui: Making smartphones last longer with code offload. In Proc. of International
    Conference on Mobile Systems, Applications, and Services (MobiSys’10), pages 49–62, San Francisco, CA, USA, June 2010.
    [12] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), pages 886–893, San Diego, CA, USA, June 2005.
    [13] M. Dong and L. Zhong. Self-constructive high-rate system energy modeling for battery-powered mobile systems. In Proc. of International Conference on Mobile
    Systems, Applications, and Services (MobiSys’11), pages 335–348, Washington, DC, USA, June 2011.
    [14] R. Ganti, F. Ye, and H. Lei. Mobile crowdsensing: Current state and future challenges. IEEE Communication Magazine, 49(11):32–39, November 2011.
    [15] M. Gonzalez, C. Hidalgo, and A. Barabasi. Understanding individual human mobility patterns. Nature, 453:779–782, June 2008.
    [16] D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele. Participatory air pollution monitoring using smartphones. In Proc. of International Workshop on Mobile
    Sensing, Beijing, China, April 2012.
    [17] S. Kosta, A. Aucinas, P. Hui, R.Mortier, and X. Zhang. ThinkAir: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In Proc. of IEEE INFOCOM, pages 945–953, Orlando, FL, USA, March 2012.
    [18] Y. Kwon and E. Tilevich. Power-efficient and fault-tolerant distributed mobile execution. In Proc. of IEEE International Conference on Distributed Computing Systems
    (ICDCS’12), pages 586–595, Macau, China, June 2012.
    [19] K. Lan, C. Chou, and H. Wang. An incentive-based framework for vehicle-based mobile sensing. Procedia Computer Science, 10:1152–1157, 2012.
    [20] C. Liao, T. Hou, T. Lin, Y. Cheng, A. Erbad, C. Hsu, and N. Venkatasubramania. Sais: Smartphone augmented infrastructure sensing for public safety and sustainability in smart cities. In Proc. of International Workshop on Emerging Multimedia Applications and Services for Smart Cities(EMASC’14), pages 3–8, Orlando, Florida, USA, November 2014.
    [21] T. Lin, T. Lin, C. Hsu, and C. King. Context-aware decision engine for mobile cloud offloading. In Proc. of IEEE Wireless Communications and Networking Conference
    Workshops (WCNCW’13), pages 111–116, Shanghai, China, April 2013.
    [22] R. Mittal, A. Kansal, and R. Chandra. Empowering developers to estimate app energy consumption. In Proc. of Annual International Conference on Mobile Computing
    and Networking (Mobicom’12), pages 317–328, Istanbul, Turkey, August 2012.
    [23] V. Namboodiri and T. Ghose. To cloud or not to cloud: A mobile device perspective on energy consumption of applications. In Proc. of IEEE International Symposium
    on a World of Wireless, Mobile and Multimedia Networks (WoWMoM’12), pages 1–9, San Francisco, CA, USA, June 2012.
    [24] G. Perrucci, F. Fitzek, and J. Widmer. Survey on energy consumption entities on the smartphone platform. In Proc. of IEEE Vehicular Technology Conference (VTC Spring’11), pages 1–6, Budapest, Hungary, May 2011.
    [25] M. Ra, B. Liu, T. Porta, and R. Govindan. Medusa: A programming framework for crowd-sensing applications. In Proc. of ACM International Conference on Mobile Systems, Applications, and Services (MobiSys’12), pages 337–350, Lake District, UK, June 2012.
    [26] A. Rahmati and L. Zhong. Context-based network estimation for energy-efficient ubiquitous wireless connectivity. IEEE Transactions on Mobile Computing,
    10(1):54–66, January 2011.
    [27] W. Sherchan, P. Jayaraman, S. Krishnaswamy, A. Zaslavsky, S. Loke, and A. Sinha. Using on-the-move mining for mobile crowdsensing. In Proc. of IEEE International Conference on Mobile Data Management (MDM’12), pages 115–124, Bengaluru, Karnataka, India, July 2013.
    [28] M. Talasila, R. Curtmola, and C. Borcea. Improving location reliability in crowd sensed data with minimal efforts. In Proc. of Joint IFIP Wireless and Mobile Networking Conference (WMNC’13), Dubai, United Arab Emirates, April 2013.
    [29] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi. Using bandwidth data to make computation offloading decisions. In Proc. of International Parallel & Distributed
    Processing Symposium (IPDPS’08), pages 1–8, Miami, FL, April 2008.
    [30] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao, and L. Yang. Accurate online power estimation and automatic battery behavior based power model generation
    for smartphones. In Proc. of IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES/ISSS’10), pages 105–114, Scottsdale, AZ, USA, October 2010.
    [31] P. Zhou, Y. Zheng, and M. Li. How long to wait?: Predicting bus arrival time with mobile phone based participatory sensing. In Proc. of ACM International Conference on Mobile Systems, Applications, and Services (MobiSys’12), pages 379–392, Lake District, UK, June 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE