簡易檢索 / 詳目顯示

研究生: 潘世昌
Shih-Chang Pan
論文名稱: SOVA渦輪碼解碼器之低功率設計
The Low Power Design of A SOVA Turbo Code Decoder
指導教授: 陳永昌
Yung-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 英文
中文關鍵詞: 渦輪碼低功率設計
外文關鍵詞: Turbo code, SOVA, Low power design
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 渦輪碼(Turbo Code)可以達到接近理論的通道容量,也已經成為下一代行動電話的標準。對於可攜式平台而言,降低功率消耗是非常重要的。
    本論文著重於低功率SOVA渦輪碼解碼器的演算法以及其在超大型積體電路上的實現。SOVA演算法比MAP演算法簡單且更適合於積體電路的實現,不過效能會降低一些。

    兩段式SOVA(two-step SOVA)先使用Viterbi演算法找出近似於最後的存活路徑(survivor path),然後再進行更新extrinsic值的動作,由於在每一時刻只要追蹤兩條路徑---存活路徑及競爭路徑(competing path),因此,複雜度可以大大地減低。另外,我們運用SST重新編碼,在訊號雜訊比不錯的情況下,存活路徑大部份會通過zero state,使得追蹤單元內狀態的變化減到最低。因此,功率的消耗可以減少。

    由於反覆解碼的特性,一個小電路可以判斷出是否可以停止解碼的動作,停止解碼的條件為全部的extrinsic值與解碼後的訊號之正負號完全一樣。模擬的結果,在訊號雜訊比為3dB及最大的iteration次數為6時,可以省下百分之六十的動作。一個低功率的ACS單元可以節省一個加法器,而且加法或減法運算所使用的位元寬度變小,因此也可以降低功率的消耗。另外,我們提出兩個方法—gated clock 及two-phase clock 進一步地改善追蹤單元的功率。

    最後,我們利用Verilog硬體描述語言描述我們的架構,並且使用Synopsys Design Compiler進行邏輯合成,由Synopsys Power Compiler 估計的結果,可以省下百分之12.1的功率。


    Turbo code can approach the theoretical channel capacity and has been regarded as the standard in the next generation mobile phones. For portable platforms, power consumption is very critical.
    In this thesis, we focus on the algorithm and VLSI implementation of the low-power SOVA-based Turbo code decoder. SOVA is simpler and more appropriate than MAP for VLSI implementation with a little degradation.

    A low complexity SOVA (Two-Step SOVA) which precedes VA to find the “almost” final survivor path and then performs the updating operations can reduce the hardware complexity. In order to minimize the state transition for Viterbi decoders, SST (Scarce State Transition) scheme was proposed. It can be easily extended to SOVA decoder.

    Due to the characteristic of iterative decoding, a termination criterion can be evaluated with a simple additional circuit. Simulation shows 60% iterations can be saved at SNR=3.0dB(if the number of iteration is 6). A low power ACSU (Add-Compare-Select Unit) which saves one adder also lowers the power consumption. We propose two schemes—gated clock and two-phase clock, to further improve the power consumption of the trace-back units.

    Finally, the design of Turbo code decoder is described with Verilog HDL code and synthesized with Synopsys Design Compiler. The power was estimated with Synopsys Power Compiler. From the simulation, 12.1% power can be saved.

    Abstract I Content II List of Figures IV List of Tables VI Abbreviations VII Chapter 1: Introduction 1 1-1 Background 1 1-1-1 Turbo Code Encoder 2 1-1-2 Turbo Code Decoder 2 1-2 Motivation 3 1-3 Thesis organization 3 Chapter 2:Soft Output Viterbi Algorithm 5 2-1 Likelihood Algebra 5 2-2 Soft Channel Outputs 6 2-3 Soft Output Viterbi Algorithm 8 2-4 The Computation of Path Metric and Metric Difference 11 2-5 Example of SOVA Reliability Updating 12 Chapter 3: Two-Step SOVA, SST and A Termination Criterion for Low Power Design 15 3-1 Two-Step SOVA 15 3-2 Scarce State Transition (SST) Scheme 18 3-3 A Termination Criterion for Low Power 25 Chapter 4: The Architecture of The Turbo Decoder 28 4-1 Overview 28 4-2 The Programmable Turbo Encoder 29 4-3 The Turbo Code Decoder 31 4-3-1 ACS (Add-Compare-Select) Module 31 4-3-2 Control Module 34 4-3-3 Trace-back Module 34 4-3-4 ECM (Extrinsic Calculation Module) 42 4-3-5 SST Module 43 4-3-6 Buffer 44 4.3.7 Interleaver 44 Chapter 5: Simulation Results 45 Chapter 6: Conclusion 48 Reference

    [1]Lang Lin,Cheng RS. „Improvements in SOVA-based decoding for turbo codes“, ICC ‚97, pp.1473-8 vol.3.
    [2]T. Troung, et. Al, „A VLSI Design for a Trace-back Viterbi Decoder, IEEE Trans. On Communications, Vol. 40, No. 3, March 1992, p. 616-624
    [3]C. Berrou, A. Glavirux and P. Thitimajshima, “Near Shannon Limit Error Correcting Coding and Decoding: Turbo-codes(1)”, ICC’93, pp.1064-1070
    [4]C. Berrou, P. Adde, E. Angui and S. Faudeil, “A Low Complexity Soft-Output Viterbi Decoder Archticture” ICC’93, pp.737-740
    [5]S. Kubota, S. Kato and T. Ishitani, “Novel Viterbi Decoder VLSI Implementation and its Performance” IEEE Trans. On Communications, Vol. 41. No. 8. August 1993, pp. 1170-1178
    [6]S. Ranpara and Dong Sam Ha, “A Low-Power Viterbi Decoder Design for Wireless Communications Applications”, IEEE 1999, pp. 377-381
    [7]J. Hagenauer, “Source-Controlled Channel Decoding” IEEE Trans. On Communications, Vol. 43. No. 9, September 1995, pp. 2449-2457
    [8]J. Hagenauer and P. Hoeher, “A Viterbi Algorithm with Soft-Decision Outputs and its Applications”, Proc. GLOBECOM ’89, Dallas, Texas, pp 47.1.1-47.1.7, Nov. 1989
    [9]S. Dolinar and D. Divsalar, “ Weight Distribution for Turbo codes using random and non-random permutations,” The Telecommunications and Data Acquisition Progress Report 42-122 Jet Propulsion Laboratory, Pasadena, CA, pp. 56-65, Aug. 15, 1995
    [10] D. Garrett and M. Stan, “A 2.5 Mb/s, 23mW SOVA Traceback Chip for Turbo Decoding Applications”, ISCAS 2001, Vol. 4, pp. 61-64
    [11] Z. Wang, H. Suzuki and K.K. Parhi, “Efficient Approaches to Improving Performance of VLSI SOVA-based Turbo Decoders”, ISCAS 2000, May 28-31, 2000, Geneva, Switzerland, pp. I287-I290
    [12] Z. Wang, H. Suzuki, and K. K. Parhi, “VLSI implementation issues of Turbo decoder design for wireless applications,“ IEEE Workshop on Signal Processing Systems, Design and Implementation, Oct. 1999 .
    [13] C. Tsui, Roger S-K. Cheng and Curtis Ling, “Low Power ACS Unit Design For the Viterbi Decoder”, ISCAS 1999, Vol. 1, pp. 137-140
    [14] R. Y. Shao, S. Lin, and M. P. C. Fossorier, “Two Simple Stopping Criteria for Turbo Decoding,” IEEE Tran. Communication, Vol. 47, pp. 1117-1120, Aug. 1999.
    [15] Carver Mead and Lynn Conway, “Introduction to VLSI System” Addison-Wesley, 1980.
    [16] M. Nourani, J. Carlletta and C. Papachristou “Synthesis-for-testability of controller-datapath pairs that use gated clocks,” IEEE Design Automation Conference 2000, pp. 613-618, 2000.
    [17] S. Hong, J. Yi and W. Stark, “VLSI design and implementation of low complexity adaptive turbo-code encoder and decoder for wireless mobile communication applications,” in Proc. 1998 IEEE Workshop Signal Processing System, pp. 233-242. 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE