研究生: |
陳正松 Cheng-Sung Chen |
---|---|
論文名稱: |
擬均向性碳纖維強化聚醚醚酮複材疊層板承受低能量衝擊並經修補後之靜態及拉伸—壓縮疲勞性質研究 Tensile and Tension-Compression Fatigue Behavior of Repaired Quasi-Isotropic Gr/PEEK Laminates after Low Energy Impact |
指導教授: |
葉孟考
Meng-Kao Yeh 戴念華 Nyan-Hwa Tai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 拉伸—壓縮疲勞 、修補後 、低能量衝擊 、Gr/PEEK 複合材料 |
外文關鍵詞: | Tension-Compression Fatigue, Repaired, Low Energy Impact, Gr/PEEK composites |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以實驗方法探討擬均向碳纖維強化聚醚醚酮(Gr/PEEK)複合材料 積層板承受低能量衝擊且經修補後之靜態拉伸與拉伸—壓縮疲勞性質,且利用非破壞檢測C-scan及微觀形態學SEM觀察其破壞模式,並針對其損傷特性以不同方法修補,以了解修補後複合材料在不同應力負荷下承受拉伸—壓縮疲勞測試勁度與疲勞壽命。
實驗結果顯示,當材料承受衝擊損傷後,在低應力等級之疲勞壽命衰減程度較大,且隨著衝擊能量的增加,壽命衰減愈嚴重。複合材料經25%Ei低能量衝擊並經修補後,其靜態拉伸強度及疲勞性質皆有提昇,修補後之低應力等級疲勞壽命改善程度較佳;而複合材料經45%Ei低能量衝擊後,試片內有部分纖維斷裂,另再加0。方向之預浸材上下各一層補片以熱壓法修補,結果顯示其靜態拉伸強度及低應力等級之疲勞壽命大幅增加,顯示0。層補片的確具有補強效果。複合材料承受拉伸—壓縮疲勞負載,其疲勞壽命較拉伸—拉伸疲勞壽命為短,而壓縮負載加速衝擊造成之裂縫和脫層延伸,使複材經25%Ei及45%Ei低能量衝擊過後之疲勞壽命衰減更多,顯示衝擊損傷加上壓縮破壞嚴重影響材料的疲勞性質。
在複合材料疲勞負載過程中,勁度先上升而後下降,複材承受低應力等級者下降幅度較承受高應力等級者明顯,顯示在低應力等級時,試片具有較佳的承受負載能力;由C-scan觀察疲勞過程損傷發展,發現脫層朝向施力方向延伸,且因基材的塑性性質使試片在斷裂前無較大的脫層產生。由SEM觀察破壞形態可發現纖維挫曲和壓縮破壞,以韋伯分佈函數分析實驗數據可合理描述材料之靜態與疲勞性質。
1. Heslehurst, R. B., “Challenges in the Repair of Composite Structures—Part 1,” SAMPE Journal, Vol. 33, No. 5, pp. 11-16, 1997.
2. 曾志明, “碳纖維強化聚醚醚酮(Carbon/PEEK)積層板承受熱循環與低能量衝擊後之疲勞行為研究,” 清華大學動力機械工程學系碩士論文,1997.
3. Lustiger, A., Uralil, F. and Newaz, G. M., “Processing and Structural Optimization of PEEK Composites,” Polymer Composites, Vol. 11, No. 1, pp. 65-75, 1990.
4. Lee, Y. and Porter, R. S., “Crystallization of Polyetheretherketone (PEEK) in Carbon Fiber Composites,” Polymer Engineering and Science, Vol. 26, No. 9, pp. 633-639, 1986.
5. Salkind, Mechanics in Application of Composite Materials, Chap. 3 Acamic Press, New York, 1972.
6. Lee, L. J.,Yang, J. N. and Sheu, D. Y., “Prediction of Fatigue Life for Matrix-Dominated Composite Laminates,” Composites Science and Technology, Vol. 46, No. 1, pp. 21-28, 1993.
7. Lafarie-Frenot, M. C. and Henaff-Gardin, C., “Formation and Growth of 90°Ply Fatigue Cracks in Carbon/Epoxy Laminates,” Composites Science and Technology, Vol. 40, No. 3, pp. 307-324, 1991.
8. Jen, M. H. R. and Hsu, J. M., “Fatigue Degradation in Centrally Notched Quasi-Isotropic Laminates,” Journal of Composite Materials, Vol. 24, No. 8, pp. 823-837, 1990.
9. Reifsnider, K. L., Henneke, E. G., Stinchcomb, W. W. and Duke, J. C., “Damage Mechanics and NDE of Composite Laminates,” Mechanics of Composite Materials, Hashin, Z. and Herakovich, C. T., Eds., Pergamon Press, New York, pp. 399-420, 1983.
10. Poursartip, A., Ashby, M. F. and Beaumont, P. W. R., “The Fatigue Damage Mechanics of a Carbon Fibre Composite Laminate: I—Development of the Model,” Composites Science and Technology, Vol. 25, No. 3, pp. 193-218, 1986.
11. Rotem, A., “Stiffness Change of a Graphite Epoxy Laminate Under Reverse Fatigue Loading,” Journal of Composites Technology & Research, Vol. 11, No. 2, pp. 59-64, 1989.
12. Rotem, A. and Nelson, H. G., “Failure of a Laminated Composite Under Tension – Compression Fatigue Loading,” Composites Science and Technology, Vol. 36, pp. 45-62, 1989.
13. 吳許合, ”碳纖維強化聚醚醚酮樹積層板複合材料之疲勞及潛變性質之探討,” 國立清華大學化工系碩士論文, 1993.
14. Whitworth, H. A., “Evaluation of the Residual Strength Degradation in Composite Laminates Under Fatigue Loading,” Composite Structure, Vol. 48, pp. 261-364, 2000.
15. Symons, D. D. and Davis, G., “Fatigue Testing of Impact-Damaged T300/914 Carbon-fibre-reinforced Plastic,” Composites Science and Technology, Vol. 60, pp. 379-389, 2000.