研究生: |
吳宗桓 Wu, Tsung-Huan |
---|---|
論文名稱: |
冠醚與含二茂鐵銨鹽組成之準輪烷晶體的光誘導機械運動 Photoinduced Mechanical Motions of Pseudorotaxane Crystals Composed of Crown Ether and Ferrocene-Containing Ammonium Salts |
指導教授: |
堀江正樹
Horie, Masaki |
口試委員: |
周鶴修
Chou, Ho-Hsiu 游進陽 Yu, Chin-Yang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 164 |
中文關鍵詞: | 光誘導機械運動 、晶體 、準輪烷 、含二茂鐵銨鹽 、二苯30冠10醚 |
外文關鍵詞: | Photoinduced Mechanical Motions, Crystals, Pseudorotaxane, Ferrocene-Containing Ammonium Salts, dibenzo[30]crown-10 ether |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們將製備並分析幾個具有不同官能基或不同陰離子的含二茂鐵銨鹽晶體,我們將通過比較這些含二茂鐵的銨鹽在結晶態中的光敏性,進一步討論置換不同官能基和陰離子的效果。另一方面,將探討由含二茂鐵之軸分子與較大之冠醚環分子所共同組成之具有光誘導性的準輪烷超分子。由於提高光敏性對於結晶分子機器的開發是必要且重要的,我們藉由使用較大之DB30C10環分子使該準輪烷超分子在結晶態下具有較大的自由空間供分子結構改變,進而提升光誘導機械運動之效率。
第二章將描述具有不同官能基或陰離子之含二茂鐵銨鹽的合成方法與性質,並藉由測量核磁共振光譜及質譜來確認該分子,再透過分析其單晶之X射線晶體學得知其分子結構。另外,透過測量吸收光譜以確認含二茂鐵銨鹽的吸收峰值。最後,透過偏振光學顯微鏡檢測熱和光學性質,並描述和比較這些晶體的光誘導機械運動。
在第三章前半部分當中,主要著重於含DB30C10環分子準輪烷超分子的合成,並藉由測量核磁共振光譜、質譜與紅外光譜來確認該分子,再透過分析其單晶之X射線晶體學得知其分子結構。而在第三章後半部分則詳述了該輪烷超分子的光誘導機械運動,並將其與先前已發表過的含DB24C8環分子輪烷超分子晶體比較,結果顯示含較大之DB30C10環分子的準輪烷超分子晶體可藉由雷射光照射產生更加顯著的面積變化。另外,該準輪烷超分子在不同強度的雷射照射下以及不同溫度下的結構也藉由其單晶之X射線晶體學得知,這使我們能夠更進ㄧ步的探討其光誘導以及熱誘導的機械運動的機制與二茂鐵上的環戊二烯的構相異構。最後,透過微力量測來探討光和機械的轉換率。
第四章將對該研究計畫所得成果進行結論,此外也提出未來可延伸進行之研究主題方向。最後,實驗方法與細節、使用之儀器以及測量結果將總結於附錄中。
In this project, several crystals of ferrocene-containing ammonium salts were prepared and analyzed. We further discussed the effect of substituents and counter anions on the photosensitivity of these ferrocene-containing salts in crystal state. On the other hand, a photo-responsive [2]pseudorotaxane composed of dibenzo[30]-crown-10 ether (DB30C10) macrocyclic ring and ferrocene-containing axle group was synthesized. DB30C10 macrocyclic ring is larger than previously used dibenzo[24]crown-8 ether (DB24C8). Therefore, the newly prepared [2]pseudorotaxane comprising of DB30C10 and ferrocene-containing axle molecule provides more free space between molecules in crystal state. We found that this structure successfully increases photosensitivity of the pseudorotaxane crystals. The higher photosensitivity is necessary and important for development of crystalline molecular machines.
In Chapter 2, the synthesis, characterization and crystal properties of the ferrocene-containing ammonium salts with different substituents and counter anions are described. These ferrocene-containing ammonium salts were characterized by NMR spectroscopy and mass spectrometry. The molecular structures were confirmed by single-crystal X-ray crystallography. Besides, UV-vis absorption spectra were measured to confirm the absorption peaks of ferrocene-containing ammonium salts. Their thermal and optical properties were examined by polarized optical microscopy. Moreover, the photoinduced mechanical motions of the crystals are compared and discussed.
In Chapter 3, the synthesis, characterization and crystal properties of the new [2]pseudorotaxane, [(Fc-tolyl)·DB30C10]+(PF6)-, is described. This [2]pseudorotaxane was characterized by NMR, mass, and infrared spectroscopies. The molecular structure was confirmed by single-crystal X-ray crystallography. Besides, UV-vis absorption spectrum was measured to confirm the absorption peaks of [(Fc-tolyl)·DB30C10]+(PF6)-. The thermal and optical properties were examined by polarized optical microscopy. Moreover, the photoresponsive mechanical motions of the crystal is described. Compared with the previously reported [2]pseudorotaxanes composed of DB24C8 ring and ferrocene-containing axle group, the crystals of [2]pseudorotaxane contained DB30C10 macrocyclic ring shows more significant volume change induced by photoirradiation. In addition, the molecular structures of [(Fc-tolyl)·DB30C10]+(PF6)- at different temperature and under 445 nm laser irradiation at different power were also analyzed by single-crystal X-ray crystallography. These results allow us to further discuss the mechanism of photoinduced and thermal-induced mechanical motions and the internal rotation of cyclopentadienyl rings of this pseudorotaxane in crystal state. Last, the photomechanical conversion was investigated by measuring the micro-force provided by the crystal of [(Fc-tolyl)·DB30C10]+(PF6)- under laser irradiation at 445 nm.
In Chapter 4, conclusions and future works are described. Experimental details are summarized in Appendix.
1. J.-M. Lehn, Angew. Chem. Int. Ed., 1988, 27, 89-112.
2. J.-M. Lehn, Supramolecular chemistry, Vch, Weinheim Germany, 1995.
3. M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan and C. Weder, Nature, 2011, 472, 334.
4. M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan and C. Weder, Nature, 2011, 472, 334.
5. D. J. Cram and J. M. Cram, Science, 1974, 183, 803-809.
6. D. A. Leigh, J. K. Wong, F. Dehez and F. Zerbetto, Nature, 2003, 424, 174.
7. B. Gomez-Lor, E. Gutierrez-Puebla, M. Iglesias, M. Monge, C. Ruiz-Valero and N. Snejko, Inorg. Chem., 2002, 41, 2429-2432.
8. D. Pijper, M. G. M. Jongejan, A. Meetsma and B. L. Feringa, J. Am. Chem. Soc., 2008, 130, 4541-4552.
9. L. Stricker, E.-C. Fritz, M. Peterlechner, N. L. Doltsinis and B. J. Ravoo, J. Am. Chem. Soc., 2016, 138, 4547-4554.
10. O. Roling, L. Stricker, J. Voskuhl, S. Lamping and B. J. Ravoo, Chem. Commun., 2016, 52, 1964-1966.
11. O. Kahn, Acc. Chem. Res., 2000, 33, 647-657.
12. E. V. Anslyn, J. Org. Chem., 2007, 72, 687-699.
13. Y. Bae, S. Fukushima, A. Harada and K. Kataoka, Angew. Chem., Int. Ed., 2003, 42, 4640-4643.
14. K. S. Chichak, S. J. Cantrill, A. R. Pease, S.-H. Chiu, G. W. Cave, J. L. Atwood and J. F. Stoddart, Science, 2004, 304, 1308-1312.
15. E. Wasserman, J. Am. Chem. Soc., 1960, 82, 4433-4434.
16. M. Cesario, C. Dietrich-Buchecker, J. Guilhem, C. Pascard and J. Sauvage, Chem. Commun., 1985, 244-247.
17. T. J. Hubin and D. H. Busch, Coord. Chem. Rev., 2000, 200, 5-52.
18. R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi and M. Venturi, Acc. Chem. Res., 2001, 34, 445-455.
19. C. O. Dietrich-Buchecker, J. P. Sauvage and J. P. Kintzinger, Tetrahedron Lett., 1983, 24, 5095-5098.
20. M. Cesario, C. O. Dietrich-Buchecker, J. Guilhem, C. Pascard and J. P. Sauvage, J. Chem. Soc., Chem. Commun., 1985, 244-247.
21. A. Livoreil, C. O. Dietrich-Buchecker and J.-P. Sauvage, J. Am. Chem. Soc., 1994, 116, 9399-9400.
22. M. C. Jiménez, C. Dietrich-Buchecker and J.-P. Sauvage, Angew. Chem. Int. Ed., 2000, 39, 3284-3287.
23. J.-P. Sauvage, Chem. Commun., 2005, 1507-1510.
24. P. L. Anelli, N. Spencer and J. F. Stoddart, J. Am. Chem. Soc., 1991, 113, 5131-5133.
25. J. D. Badjić, V. Balzani, A. Credi, S. Silvi and J. F. Stoddart, Science, 2004, 303, 1845-1849.
26. G. Du, E. Moulin, N. Jouault, E. Buhler and N. Giuseppone, Angew. Chem. Int. Ed., 2012, 51, 12504-12508.
27. Y. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielsen, E. DeIonno, G. Ho, J. Perkins, H. R. Tseng, T. Yamamoto and J. F. Stoddart, ChemPhysChem, 2002, 3, 519-525.
28. N. Koumura, R. W. Zijlstra, R. A. van Delden, N. Harada and B. L. Feringa, Nature, 1999, 401, 152.
29. T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Maciá, N. Katsonis, S. R. Harutyunyan, K.-H. Ernst and B. L. Feringa, Nature, 2011, 479, 208-211.
30. J. Bauer, L. Hou, J. C. Kistemaker and B. L. Feringa, J. Org. Chem., 2014, 79, 4446-4455.
31. G. Rapenne and C. Joachim, Nat. Rev. Mater., 2017, 2, 17040.
32. M. A. Garcia-Garibay, PNAS, 2005, 102, 10771.
33. T.-A. V. Khuong, J. E. Nuñez, C. E. Godinez and M. A. Garcia-Garibay, Acc. Chem. Res., 2006, 39, 413-422.
34. A. Junk and F. Riess, Am. J. Phys, 2006, 74, 825-830.
35. A. J. McConnell, C. S. Wood, P. P. Neelakandan and J. R. Nitschke, Chem. Rev., 2015, 115, 7729-7793.
36. S. Palagi, A. G. Mark, S. Y. Reigh, K. Melde, T. Qiu, H. Zeng, C. Parmeggiani, D. Martella, A. Sanchez-Castillo, N. Kapernaum, F. Giesselmann, D. S. Wiersma, E. Lauga and P. Fischer, Nat. Mater., 2016, 15, 647-653.
37. J. Lee, S. Oh, J. Pyo, J.-M. Kim and J. H. Je, Nanoscale, 2015, 7, 6457-6461.
38. J.-a. Lv, W. Wang, J. Xu, T. Ikeda and Y. Yu, Macromol. Rapid Commun., 2014, 35, 1266-1272.
39. N. Hosono, T. Kajitani, T. Fukushima, K. Ito, S. Sasaki, M. Takata and T. Aida, Science, 2010, 330, 808-811.
40. F. Cheng, R. Yin, Y. Zhang, C.-C. Yen and Y. Yu, Soft Matter., 2010, 6, 3447-3449.
41. Y. Yu, M. Nakano and T. Ikeda, Nature, 2003, 425, 145-145.
42. D. Kim, H. S. Lee and J. Yoon, Sci. Rep., 2016, 6, 20921.
43. T. Taniguchi, H. Sugiyama, H. Uekusa, M. Shiro, T. Asahi and H. Koshima, Nat. Commun., 2018, 9, 538.
44. C. Yang, W. Wang, C. Yao, R. Xie, X.-J. Ju, Z. Liu and L.-Y. Chu, Sci. Rep., 2015, 5, 13622.
45. L. Zhang, I. Desta and P. Naumov, Chem. Commun., 2016, 52, 5920-5923.
46. L. Zhang, S. Chizhik, Y. Wen and P. Naumov, Adv. Funct. Mater., 2016, 26, 1040-1053.
47. L. Zhang, S. Chizhik, Y. Wen and P. Naumov, Adv. Funct. Mater., 2015, 26, 1040-1053.
48. C. Ke, Nat. Nanotechnol., 2017, 12, 504.
49. F. Terao, M. Morimoto and M. Irie, Angew. Chem. Int. Ed., 2012, 124, 925-928.
50. E. Uchida, R. Azumi and Y. Norikane, Nat. Commun., 2015, 6, 7310.
51. H. J. Shepherd, I. y. A. Gural’skiy, C. M. Quintero, S. Tricard, L. Salmon, G. Molnár and A. Bousseksou, Nat. Commun., 2013, 4, 2607.
52. R. Medishetty, A. Husain, Z. Bai, T. Runčevski, R. E. Dinnebier, P. Naumov and J. J. Vittal, Angew. Chem. Int. Ed., 2014, 53, 5907-5911.
53. R. Medishetty, S. C. Sahoo, C. E. Mulijanto, P. Naumov and J. J. Vittal, Chem. Mater., 2015, 27, 1821-1829.
54. X. Guo, J. Zhou, M. A. Siegler, A. E. Bragg and H. E. Katz, Angew. Chem. Int. Ed., 2015, 54, 4782-4786.
55. T. Taniguchi, J. Fujisawa, M. Shiro, H. Koshima and T. Asahi, Chem. Eur. J., 2016, 22, 7950-7958.
56. O. S. Bushuyev, T. Friscic and C. J. Barrett, CrystEngComm, 2016, 18, 7204-7211.
57. C. D. Eisenbach, Polymer, 1980, 21, 1175-1179.
58. F. Agolini and F. P. Gay, Macromolecules, 1970, 3, 349-351.
59. L. Matějka, M. Ilavský, K. Dušek and O. Wichterle, Polymer, 1981, 22, 1511-1515.
60. H. Finkelmann, E. Nishikawa, G. G. Pereira and M. Warner, Phys. Rev. Lett., 2001, 87, 015501.
61. T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi and A. Kanazawa, Adv. Mater., 2003, 15, 201-205.
62. Y. Yu, M. Nakano, A. Shishido, T. Shiono and T. Ikeda, Chem. Mater., 2004, 16, 1637-1643.
63. S. Kobatake, S. Takami, H. Muto, T. Ishikawa and M. Irie, Nature, 2007, 446, 778.
64. M. Morimoto and M. Irie, J. Am. Chem. Soc., 2010, 132, 14172-14178.
65. F. Terao, M. Morimoto and M. Irie, Angew. Chem. Int. Ed., 2011, 51, 901-904.
66. D. Kitagawa and S. Kobatake, Chem. Commun., 2015, 51, 4421-4424.
67. D. Kitagawa, H. Nishi and S. Kobatake, Angew. Chem. Int. Ed., 2013, 52, 9320-9322.
68. H. Koshima, N. Ojima and H. Uchimoto, J. Am. Chem. Soc., 2009, 131, 6890-6891.
69. Y. Norikane, S. Tanaka and E. Uchida, CrystEngComm, 2016, 18, 7225-7228.
70. H. Wang, P. Chen, Z. Wu, J. Zhao, J. Sun and R. Lu, Angew. Chem. Int. Ed., 2017, 56, 9463-9467.
71. H. Koshima, H. Uchimoto, T. Taniguchi, J. Nakamura, T. Asahi and T. Asahi, CrystEngComm, 2016, 18, 7305-7310.
72. P. Commins, I. T. Desta, D. P. Karothu, M. K. Panda and P. Naumov, Chem. Commun., 2016, 52, 13941-13954.
73. D. Das, T. Jacobs and L. J. Barbour, Nat. Mater., 2010, 9, 36-39.
74. Z.-S. Yao, M. Mito, T. Kamachi, Y. Shiota, K. Yoshizawa, N. Azuma, Y. Miyazaki, K. Takahashi, K. Zhang, T. Nakanishi, S. Kang, S. Kanegawa and O. Sato, Nat. Chem., 2014, 6, 1079-1083.
75. M. K. Panda, T. Runčevski, S. Chandra Sahoo, A. A. Belik, N. K. Nath, R. E. Dinnebier and P. Naumov, Nat. Commun., 2014, 5.
76. K.-J. Chen, Y.-C. Tsai, Y. Suzaki, K. Osakada, A. Miura and M. Horie, Nat. Commun., 2016, 7.
77. P. R. Ashton, M. C. T. Fyfe, C. Schiavo, J. F. Stoddart, A. J. P. White and D. J. Williams, Tetrahedron Lett., 1998, 39, 5455-5458.
78. K. Zhu, V. N. Vukotic, N. Noujeim and S. J. Loeb, Chem. Sci., 2012, 3, 3265.
79. S. Ghosh, T. Chaudhuri, E. Padmanaban and C. Mukhopadhyay, J. Mol. Struct., 2015, 1097, 6-14.
80. T. Yuki, Y. Koyama, T. Matsumura and T. Takata, Org. Lett., 2013, 15, 4438-4441.
81. M. Lee, U. H. Choi, R. H. Colby and H. W. Gibson, Macromol. Chem. Phys., 2015, 216, 344-349.
82. D. H. Barton, Science, 1970, 169, 539-544.
83. R. K. Bohn and A. Haaland, J. Organomet. Chem., 1966, 5, 470-476.
84. H. Werner, Angew. Chem. Int. Ed., 2012, 51, 6052-6058.
85. S. Coriani, A. Haaland, T. Helgaker and P. Jørgensen, ChemPhysChem, 2006, 7, 245-249.
86. I. B. Sivaev, Molecules, 2017, 22, 2201.
87. E. W. Abel, N. J. Long, K. G. Orrell, A. G. Osborne and V. Šik, J. Organomet. Chem., 1991, 403, 195-208.
88. Y. Okada, S. Yamamoto, Y. Namba, T. Masuda and K. Sakamoto, Spectral Analysis Review, 2016, 4, 41.
89. X.-B. Wang, B. Dai, H.-K. Woo and L.-S. Wang, Angew. Chem., 2005, 117, 6176-6178.
90. V. V. Yanilkin, G. R. Nasybullin, N. V. Nastapova, T. I. Madzhidov, L. Z. Latypova, V. I. Morozov, R. P. Shekurov and V. A. Milyukov, Russ. J. Electrochem., 2015, 51, 645-664.
91. P. A. Deck, M. J. Lane, J. L. Montgomery, C. Slebodnick and F. R. Fronczek, Organometallics, 2000, 19, 1013-1024.
92. M. Enders, G. Kohl and H. Pritzkow, J. Organomet. Chem., 2001, 622, 66-73.
93. S. Ø. Scottwell, A. B. S. Elliott, K. J. Shaffer, A. Nafady, C. J. McAdam, K. C. Gordon and J. D. Crowley, Chem. Commun., 2015, 51, 8161-8164.
94. J. D. Crowley, I. M. Steele and B. Bosnich, Chem. Eur. J., 2006, 12, 8935-8951.
95. I. Baumgardt and H. Butenschön, Eur. J. Org. Chem. , 2010, 2010, 1076-1087.
96. S. R. Alley and W. Henderson, J. Organomet. Chem., 2001, 637-639, 216-229.
97. Y. C. Neo, J. J. Vittal and T. S. A. Hor, J. Organomet. Chem., 2001, 637-639, 757-761.
98. M. A. Bush and M. R. Truter, J. Chem. Soc., Perkin Trans. 2, 1972, DOI: 10.1039/P29720000345, 345-350.
99. M. Horie, Y. Suzaki and K. Osakada, Inorg. Chem., 2005, 44, 5844-5853.