簡易檢索 / 詳目顯示

研究生: 黃勝揚
Sheng-Yang Huang
論文名稱: 改善鉑釕觸媒的電化學活性於直接甲醇燃料電池上的應用
Promotion of Platinum-Ruthenium Catalyst for Direct Methanol Fuel Cell Application
指導教授: 葉君棣
Chuin-Tih Yeh
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 127
中文關鍵詞: 直接甲醇燃料電池鉑釕觸媒共沉澱法氧化鈰層溫還原技術氧化處理化學偏析
外文關鍵詞: Platinum-ruthenium catalyst, co-precipitation, temperature programmed reduction, cerium oxide, oxidation treatment, methanol electro-oxidation, chemical segregation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用初濕含浸法(incipient wetness impregnation)與共沉澱法(co-precipitation)來製備10 wt% Pt50Ru50/C(觸媒中鉑與釕的原子比為50:50),製備得到的鉑釕觸媒會先以氫氣還原並加以活化。TEM與XRD鑑定的結果顯示鉑釕合金(dPtRu ~ 2 nm)均勻地分散在還原後的觸媒上。TPR結果則指出還原後觸媒上面會形成一個鉑金屬在外層;釕金屬在內部的核層結構。催化活性測試的部分,使用循環伏特法(cyclic voltammetry,CV)來測試Pt50Ru50/C觸媒催化甲醇氧化的反應,實驗結果發現兩種改質方式可以提高鉑釕觸媒的電化學活性,包括氧化熱處理以及添加第三種元素,即氧化鈰。
    使用氧化鈰來修飾Pt-Ru/C觸媒可以有效地提高甲醇氧化反應的電流值。促進效應來自於添加氧化鈰能夠降低鉑釕合金的顆粒尺寸。然而修飾的效果與製備方法以及氧化鈰的添加量有直接的關係,實驗結果發現,若以含浸法製備時鉑釕合金會被含浸到微孔洞(micropore)中,共沉澱法則會造成部分的鉑釕合金被氧化鈰包覆,以上兩種現象都會降低活性位置(active sites)的數目,使得Pt-Ru合金無法參與反應。研究證明活性位置(NPt)、與反應物接觸的能力(Fs)以及鉑釕合金的分散度(dispersion,DPtRu)直接影響觸媒的電化學活性。活性位置數目最多的鉑釕觸媒擁有最佳的甲醇氧化反應活性。
    探討氧化熱處理對Pt-Ru/C觸媒的影響時發現,鉑釕合金的尺寸與結構會受到氧化溫度(To)影響。提高氧化溫度時,合金內部的釕原子會往外偏析(segregation)並且氧化形成非晶質的氧化釕(RuaO2)。釕偏析的程度隨著溫度提高而增加,當氧化溫度高於520 K時便會出現氧化釕的晶粒(RucO2)。經過氧化處理後Pt-Ru/C觸媒的電化學活性也有顯著的提升,觸媒催化活性增加歸因於釕的偏析以及產生氧化釕的區塊(domain)。然而當氧化溫度高於600 K時,作為支撐物的活性碳會因為劇烈氧化而使得原本均勻分散的鉑釕合金顆粒燒結(sintering),進而導致觸媒活性的衰退。


    Alloy catalyst of 10 wt% Pt50Ru50/C (with a Pt:Ru atomic ratio of 50:50) was prepared by methods of incipient wetness impregnation and co-precipitation and then activated by hydrogen reduction. TEM and XRD examinations indicated that bimetallic crystallites were finely dispersed with a diameter of dPtRu ~ 2 nm on the reduced catalyst. TPR characterization suggested that deposited bimetallic crystallites exhibited a cherry-like structure with Pt at shell and Ru in core. Catalytic activity of the prepared catalyst toward electro-oxidation of methanol was examined by cyclic voltammetry (CV). The activity of alloy catalyst was found promoted by two kinds of modifications, incorporation of ceria and oxidation treatment.
    The promotion of ceria was attributed to an increase in the dispersion of deposited alloy crystallites. However, the extent of promotion depended heavily on the procedure of catalyst preparation and the loading of ceria. Evidently, portion of the alloy particles did not participate in reaction due to being impregnated into internal pores of carbon support as well as occluded into bulk of CeO2 crystallites codeposited. A promoted catalyst with the highest exposure of Pt-Ru nanoalloys exhibited the best electro-activity to methanol oxidation.
    The size and the structure of dispersed crystallites were found changed on increasing the temperature of oxidation treatment (To). On mild oxidation, atoms of Ru in the core were found gradually segregated to the surface of bimetallic crystallites and oxidized to amorphous RuO2. Crystalline RuO2 (RucO2) was formed on extensive segregation at To > 520 K. The promotion of oxidation treatment was therefore attributed to the segregation of Ru and the formation of RucO2. Oxidation treatment at elevated temperatures of To > 600 K, however, caused a deactivation to the electro-activity. The deactivation is interpreted with excessive oxidation of the carbon support and a severe sintering of dispersed crystallites.

    Table of Contents Abstract Table of Contents (I) List of Tables (IV) List of Figures (V) Chapter 1 Background and Introduction (1) 1-1 Use of the energy (1) 1-2 Fuel cells (1) 1-3 Advantages and applications of fuel cells (2) 1.4 Polymer electrolyte membrane fuel cell (PEMFC) (4) 1.5 Direct methanol fuel cell (DMFC) (6) 1-5-1 History and overview (6) 1-5-2 The performance losses in DMFC (7) 1-5-3 Better anode electrocatalyst materials (11) 1-6 Paper review (14) 1-6-1 Enhance the electroactivity of Pt-Ru catalysts (14) 1-6-2 Different types of carbon supporting materials (19) 1-6-3 Modify the Pt-Ru/C with appropriate promoters (22) 1-7 Motivation and approaches (22) 1-8 References (24) Chapter 2 Experimental Section (28) 2-1 Chemicals and solutions (28) 2-2 Inductively coupled plasma-atomic emission spectrometer (ICP-AES) (28) 2-3 X-ray powder diffractometer (XRPD) (28) 2-4 Transmission electron microscopy (TEM) (31) 2-5 Vacuum system and nitrogen physical adsorption (32) 2-6 Thermal gravimetric analyzer (TGA) (33) 2-7 Temperature programmed reduction (TPR) (35) 2-8 Cyclic-voltammetry (CV) (35) 2-9 X-ray absorption spectroscopy (XAS) (37) 2-10 References (42) Chapter 3 Characterization of Surface Composition of Platinum and Ruthenium Nanoalloys Dispersed on Active Carbon (45) 3-1 Introduction (45) 3-2 Experimental section (48) 3-2-1 Sample preparation (48) 3-2-2 Sample characterization (53) 3-3 Results and discussion (53) 3-3-1 Characterization of monometallic Pt/C samples (53) 3-3-2 Characterization of monometallic Ru/C samples (55) 3-3-3 Characterization of bimetallic Pt-Ru/C samples (62) 3-3-4 Model for Pt50Ru50/C oxidation (67) 3-4 Conclusions (69) 3-5 References (69) Chapter 4 Promotion of Platinum-Ruthenium Catalyst for Electro-oxidation of Methanol by Ceria (72) 4-1 Introduction (72) 4-2 Experimental section (73) 4-2-1 Catalyst preparation (73) 4-2-2 Catalyst characterization (75) 4-2-3 Cyclic-voltammetric oxidation of methanol (75) 4-3 Results (79) 4-4 Discussion (92) 4-4-1 Promotion effect of CeO2 (92) 4-4-2 Effect of preparation procedure on Pt7Ru3-Cex/C (95) 4-5 Conclusions (96) 4-6 References (98) Chapter 5 Promotion of Electrochemical Activity of Bimetallic Platinum-Ruthenium Catalyst by Oxidation-induced Segregation (101) 5-1 Introduction (101) 5-2 Experimental section (103) 5-2-1 Catalyst preparation (103) 5-2-2 Catalyst characterization (103) 5-2-3 Cyclic-voltammetric oxidation of methanol (106) 5-3 Results and discussion (107) 5-3-1 Electrochemical performance (107) 5-3-2 XRD and TEM characterization of fresh and oxidized catalysts (107) 5-3-3 TPR characterization of oxidized catalysts (115) 5-3-4 Model for oxidation of PtRu/C on increasing To (119) 5-3-5 Correlation of I07 with the oxidation model (121) 5-4 Conclusions (122) 5-5 Notation (122) 5-6 References (123) Chapter 6 Conclusions (126) Appendix 1 X-ray Absorption Spectroscopy Studies on Phase Segregation of Platinum-Ruthenium Bimetallic Nanoparticles (A-1) A1-1 Introduction (A-1) A1-2 Experimental section (A-2) A1-2-1 Catalyst preparation (A-2) A1-2-2 Catalyst characterization (A-4) A1-3 Results and discussion (A-5) A1-4 Conclusions (A-19) A1-5 References (A-19) Appendix 2 Chemical Activity of Palladium Clusters in Subnanometer Size: Sorption of Hydrogen (A-23) A2-1 Introduction (A-23) A2-2 Experimental section (A-25) A2-2-1 Sample preparation (A-25) A2-2-2 Sample characterization and hydrogen chemisorption (A-25) A2-3 Results and discussion (A-27) A2-3-1 Sorption of hydrogen into palladium (A-27) A2-3-2 Potential energy diagram (A-35) A2-3-3 Size effect on adsorption on metal clusters (A-38) A2-4 Conclusions (A-39) A2-5 Notation (A-40) A2-6 References (A-40)

    Chapter 1
    [1] U.S. Department of Energy, “Fuel Cell Handbook (Sixth Edition)”, Morgantown, West Virginia, 2002, Chapter 1.
    [2] J. Larminie, A. Dicks, “Fuel cell systems explained”, John Wiley & Sons, 2002, Chapter 1.
    [3] M. P. Hogarth, T. R. Ralph, Platinum Met. Rev. 46 (2002) 146.
    [4] T. R. Ralph, G. A. Hards, Chem. Ind. 9 (1998) 337.
    [5] K. R. Williams, M. R. Andrew, F. Jones, “Hydrocarbon Fuel Cell Technology”, B. S. Baker, Ed., Academic Press, New York, 1965, pp. 143-149.
    [6] B. L. Tarmy, G. Ciprios, “Engineering Developments in Energy Conversion”, ASME, 1965, pp. 272-283.
    [7] J. N. Murray, P. G. Grimes, “Fuel Cells”, CEP Technical Manual, American Institute of Chemical Engineers (Progress Technical Manual), 1963, pp. 57-65.
    [8] H. Binder, A. Kohling, G. Standstede, “Hydrocarbon Fuel Cell Technology”, B. S. Baker, Ed., Acandemic Press, New York, 1965, pp. 91-102.
    [9] S. Surampudi, S. R. Narayanan, E. Vamos, H. Frank, G. Halpert, A. LaConti, J. Kosek, G. K. S. Prakash, G. A. Olah, J. Power Sources 47 (1994) 377.
    [10] K. Sundmacher, K. Scott, Chem. Eng. Sci. 54 (1999) 2927.
    [11] T. Iwasita, F. C. Nart, J. Electroanal. Chem. 317 (1991) 291.
    [12] S.-Y. Huang, S.-M. Chang, C.-T. Yeh, J. Phys. Chem. B 110 (2006) 234.
    [13] R. Liu, H. Iddir, Q. Fan, G. Hou, A. Bo, K. L. Ley, E. S. Smotkin, J. Phys. Chem. B 104 (2000) 2518.
    [14] Y.-C. Liu, X.-P. Qiu, Y.-Q. Huang, W.-T. Zhu, J. Power Sources 111 (2002) 160.
    [15] S. Gottesfeld, J. Pafford, J. Electrochem. Soc. 135 (1988) 2651.
    [16] M. P. Hogarth, T. R. Ralph, Platinum Met. Rev. 46 (2002) 117.
    [17] P. Stonehart, P. N. Ross, Catal. Rev. Sci. Eng. 12 (1975) 1.
    [18] Z. Jusys, T. J. Schmidt, L. Dubau, K. Lasch, J. Garche, R. J. Behm, J. Power Sources 105 (2002) 297.
    [19] W. T. Napporn, H. Laborde, J.-M. Léger, C. Lamy, J. Electroanal. Chem. 404 (1996) 153.
    [20] W. F. Lin, M. S. Zei, M. Eiswirth, G. Ertl, T. Iwasita, W. Vielstich, J. Phys. Chem. B 103 (1999) 6968.
    [21] S.-Y. Huang, C.-M. Chang, C.-T. Yeh, J. Catal. 241 (2006) 400.
    [22] A. S. Arico, P. L. Antonucci, E. Modica, V. Baglio, H. Kim, V. Antonucci, Electrochim. Acta 47 (2002) 3723.
    [23] J. M. Hutchinson, Jr., Platinum Met. Rev. 16 (1972) 88.
    [24] M. Watanabe, M. Uchida, S. Motoo, J. Electroanal. Chem. 229 (1987) 395.
    [25] K.-W. Park, J.-H. Choi, S.-A. Lee, C. Pak, H. Chang, Y.-E. Sung, J. Catal. 224 (2004) 236.
    [26] M. Watanabe, S. Motoo, J. Electroanal. Chem. 60 (1975) 275.
    [27] T. Toda, H. Igagrashi, H. Uchida, M. Watanabe, J. Electrochem. Soc. 146 (1999) 3750.
    [28] K.-W. Park, J.-H. Choi, Y.-E. Sung, J. Phys. Chem. B 107 (2003) 5851.
    [29] M. T. M. Koper, T. E. Shubina, R. A. V. Santen, J. Phys. Chem. B 106 (2002) 686.
    [30] M. Watanabe, S. Motoo, J. Electroanal. Chem. 60 (1975) 267.
    [31] F. B. Mongeot, M. Scherer, B. Gleich, E. Kopatzki, R. J. Behm, Surf. Sci. 411 (1998) 249.
    [32] J. B. Goodenough, R. Manoharan, A. K. Shukla, K. V. Ramesh, Chem. Mater. 1 (1989) 391.
    [33] K.-W. Park, J.-H. Choi, B.-K. Kwon, S.-A. Lee, Y.-E. Sung, H.-Y. Ha, S.-A. Hong, H. Kim, A. Wieckowski, J. Phys. Chem. B 106 (2002) 1869.
    [34] B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, C. Chan, T. E. Mallouk, J. Phys. Chem. B 102 (1998) 9997.
    [35] Q. Lu, B. Yang, L. Zhuang, J. Lu, J. Phys. Chem. B 109 (2005) 1715.
    [36] J. W. Long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, J. Phys. Chem. B 104 (2000) 9772.
    [37] E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, C. M. Lukehart, J. Phys. Chem. B 105 (2001) 8097.
    [38] B.-J. Hwang, L. S. Sarma, J.-M. Chen, C.-H. Chen, S.-C. Shih, G.-R. Wang, D.-G. Liu, J.-F. Lee, M.-T. Tang, J. Am. Chem. Soc. 127 (2005) 11140.
    [39] C. A. Bessel, K. Laubernds, N. M. Rodriguez, R. T. K. Baker, J. Phys. Chem. B 105 (2001) 1115.
    [40] S. Iijima, Nature 354 (1991) 56.
    [41] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Nature 384 (1996) 54.
    [42] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. Smalley, Nature 384 (1996) 147.
    [43] J. Prabhuram, T. S. Zhao, Z. K. Tang, R. Chen, Z. X. Liang, J. Phys. Chem. B 110 (2006) 5245.
    [44] Y. H. Lin, X. L. Cui, C. H. Yen, C. M. Wai, Langmuir 21 (2005) 11474.
    [45] P. K. Shen, C. W. Xu, R. Zeng, Y. L. Liu, Electrochem. Solid State Lett. 9 (2006) A39.
    [46] C. W. Xu, P. K. Shen, X. Ji, R. Zeng, Y. L. Liu, Electrochem. Commun. 7 (2005) 1305.
    [47] C. W. Xu, P. K. Shen, Chem. Commun. 19 (2004) 2238.
    [48] C. W. Xu, P. K. Shen, J. Power Sources 142 (2005) 27.

    Chapter 2
    [1] S. Brunauer, P. H. Emmtt, E. Teller, J. Am. Chem. Soc. 60 (1938) 309.
    [2] S.-Y. Huang, S.-M. Chang, C.-T. Yeh, J. Phys. Chem. B 110 (2006) 234.
    [3] W. Z. Kossel, Phys. 1 (1920) 119.
    [4] B.-J. Hwang, L. S. Sarma, J.-M. Chen, C.-H. Chen, S.-C. Shih, G.-R. Wang, D.-G. Liu, J.-F. Lee, M.-T. Tang, J. Am. Chem. Soc. 127 (2005) 11140.
    [5] C. Bock, C. Paquet, M. Couillard, G. A. Botton, B. R. MacDougall, J. Am. Chem. Soc. 126 (2004) 8028.
    [6] J. II. Park, M. G. Kim, Y.-W. Jun, J. S. Lee, W.-R. Lee, J. Cheon, J. Am. Chem. Soc. 126 (2004) 9072.
    [7] P. K. Babu, H. S. Kim, E. Oldfield, A. Wieckowski, J. Phys. Chem. B 107 (2003) 7595.
    [8] D.-G. Liu, J.-F. Lee, M.-T. Tang, J. Mol. Catal. A 240 (2005) 197.
    [9] D. C. Koningsberger, R. Prins, “X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES”, 1988, pp.53-83.
    [10] AUTOBK 2.61: M. Newville, Department of Physics FM-15 University of Washington, January 25, 1995.
    [11] M. Newville, P. Livins, Y. Yacoby, J. J. Rehr, E. A. Stern, Phys. Rev. B 47 (1993) 14126.

    Chapter 3
    [1] M. P. Hogarth, T. R. Ralph, Platinum Met. Rev. 46 (2002) 146.
    [2] T. R. Ralph, G. A. Hards, Chem. Ind. 9 (1998) 337.
    [3] L. Mo, X. Zheng, C.-T. Yeh, Chem. Commun. (2004) 1426.
    [4] P. Stonehart, P. N. Ross, Catal. Rev. Sci. Eng. 12 (1975) 1.
    [5] R. Liu, H. Iddir, Q. Fan, G. Hou, A. Bo, K. L. Ley, E. S. Smotkin, J. Phys. Chem. B 104 (2000) 2518.
    [6] W. F. Lin, M. S. Zei, M. Eiswirth, G. Ertl, T. Iwasita, W. Vielstich, J. Phys. Chem. B 103 (1999) 6968.
    [7] J. W. long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, J. Phys. Chem. B 104 (2000) 9772.
    [8] K.-W. Park, J.-H. Choi, S.-A. Lee, C. Pak, H. Chang, Y.-E. Sung, J. Catal. 224 (2004) 236.
    [9] M. Watanabe, S. Motoo, J. Electroanal. Chem. 60 (1975) 275.
    [10] T. Toda, H. Igagrashi, H. Uchida, M. Watanabe, J. Electrochem. Soc. 146 (1999) 3750.
    [11] K.-W. Park, J.-H. Choi, Y.-E. Sung, J. Phys. Chem. B 107 (2003) 5851.
    [12] A. S. Arico, P. L. Antonucci, E. Modica, V. Baglio, H. Kim, V. Antonucci, Electrochim. Acta 47 (2002) 3723.
    [13] J. M. Hutchinson, Jr., Platinum Met. Rev., 16 (1972) 88.
    [14] R. V. Hardeveld, F. Hartog, Surface Science 15 (1969) 189.
    [15] M. S. Nashner, A. I. Frenkel, D. Somerville, C. W. Hill, J. R. Shapley, R. G. Nuzzo, J. Am. Chem. Soc. 120 (1998) 8093.
    [16] M. S. Nashner, A. I. Frenkel, D. L. Adler, J. R. Shapley, R. G. Nuzzo, J. Am. Chem. Soc. 119 (1997) 7760.
    [17] D. Briggs, M. P. Seah, “Practical Surface Analysis”, John Wiley & Sons, 1990, Vol. 1.
    [18] S. Yuvaraj, T. H. Chang, C. T. Yeh, J. Catal. 221 (2004) 466.
    [19] C. P. Hwang, C. T. Yeh, J. Mol. Catal. A 112 (1996) 295.
    [20] P. Fronasiero, J. Kaspar, T. Montini, V. D. Samto, R. Psaro, S. Recchia, J. Mol. Catal. A 204 (2003) 683.
    [21] C. P. Hwang, C. T. Yeh, J. Catal. 182 (1999) 48.
    [22] S. Hosokawa, H. Kanai, K. Utani, Y. I. Taniguchi, Y. Saito, S. Imamura, Appl. Catal. B 45 (2003) 181.
    [23] V. Mazzieri, F. Coloma-Pascual, A. Arcoya, P. C. L’Argentiere, N. S. Figoli, Appl. Surf. Sci. 210 (2003) 222.
    [24] C. Crisafulli, S. Scire, S. Minico, L. Solarino, Appl. Catal. A 225 (2002) 1.
    [25] P. G. Koopman, A. P. G. Kieboom, H. V. Bekkum, J. Catal. 69 (1981) 172.
    [26] A. J. Rouco, G. L. Haller, J. A. Oliver, C. J. Kemball, J. Catal. 84 (1983) 297.
    [27] From Joint Committee for Powder Diffraction Studies (JCPDS) data.

    Chapter 4
    [1] A. J. Appleby, F. R. Foulkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, New York, 1989.
    [2] S.-Y. Huang, S.-M. Chang, C.-T. Yeh, J. Phys. Chem. B 110 (2006) 234.
    [3] R. Liu, H. Iddir, Q. Fan, G. Hou, A. Bo, K. L. Ley, E. S. Smotkin, J. Phys. Chem. B 104 (2000) 2518.
    [4] Y.-C. Liu, X.-P. Qiu, Y.-Q. Huang, W.-T. Zhu, J. Power Sources 111 (2002) 160.
    [5] P. Stonehart, P. N. Ross, Catal. Rev. Sci. Eng. 12 (1975) 1.
    [6] Z. Jusys, T. J. Schmidt, L. Dubau, K. Lasch, J. Garche, R. J. Behm, J. Power Sources 105 (2002) 297.
    [7] W. T. Napporn, H. Laborde, J.-M. Léger, C. Lamy, J. Electroanal. Chem. 404 (1996) 153.
    [8] T. Frelink, W. Visscher, A. P. Cox, J. A. R. van Veen, Electrochim. Acta 40 (1995) 1537.
    [9] L. Mo, X. Zheng, C.-T. Yeh, Chem. Commun. (2004) 1426.
    [10] M. Kang, M. W. Song, C. H. Lee, Appl. Catal. A 251 (2003) 143.
    [11] X. Tang, B. Zhang, Y. Li, Y. Xu, Q. Xin, W. Shen, Catal. Today 93 (2004) 191.
    [12] C. Xu, P. K. Shen, J. Power Sources 142 (2005) 27.
    [13] H. B. Yu, J. H. Kim, H. I. Lee, M. A. Scibioh, J. Lee, J. Han, S. P. Yoon, H. Y. Ha, J. Power Sources 140 (2005) 59.
    [14] C. Xu, P. K. Shen, Chem. Commun. (2004) 2238.
    [15] B. Harrison, A. F. Diwell, C. Hallett, Platinum Met. Rev. 32 (1988) 73.
    [16] P. Bera, A. Gayen, M. S. Hedge, N. P. Lalla, L. Spadaro, F. Frusteri, F. Arena, J. Phys. Chem. B 107 (2003) 6122.
    [17] T. Bunluesin, H. Cordatos, R. J. Gorte, J. Catal. 157 (1995) 222.
    [18] D. S. Newsome, Catal. Rev. Sci. Eng. 21 (1980) 275.
    [19] Y. li, Q. Fu, M. F. Stephanopoulos, Appl. Catal. B 27 (2000) 179.
    [20] L. Mo, X. Zheng, C.-T. Yeh, ChemPhysChem. 6 (2005) 1470.
    [21] G. R. Rao, P. Fornasiero, R. D. Monte, J. Kaŝpar, G. Vlaic, G. Balducci, S. Meriani, G. Gubitosa, A. Cremona, M. Grazianiy, J. Catal. 162 (1996) 1.
    [22] S. E. Golunski, H. A. Hatcher, R. R. Rajaram, T. J. Truex, Appl. Catal. B 5 (1995) 367.
    [23] From Joint Committee for Powder Diffraction Studies (JCPDS) data.
    [24] K.-W. Park, J.-H. Choi, S.-A. Lee, C. Pak, H. Chang, Y.-E. Sung, J. Catal. 224 (2004) 236.
    [25] M. P. Hogarth, T. R. Ralph, Platinum Met. Rev. 46 (2002) 146.
    [26] J. M. Garcia-Cortes, J. Perez-Ramirez, M. J. Illan-Gomez, C. Salinas-Martinez de Lecea, Catal. Commun. 4 (2003) 165.
    [27] D. R. Rolison, Science 299 (2003) 1698.
    [28] V. Raghuveer, A. Manthiram, Electrochem. Solid-State Lett. 7 (2004) A336.

    Chapter 5
    [1] K. Sundmacher, K. Scott, Chem. Eng. Sci. 54 (1999) 2927.
    [2] M. P. Hogarth, T. R. Ralph, Platinum Met. Rev. 46 (2002) 146.
    [3] M. P. Hogarth, G. A. Hards, Platinum Met. Rev. 44 (1996) 150.
    [4] S. Liao, K.-A. Holmes, H. Tsaprailis, V. I. Birss, J. Am. Chem. Soc. 128 (2006) 3504.
    [5] A. S. Arico, P. L. Antonucci, E. Modica, V. Baglio, H. Kim, V. Antonucci, Electrochim. Acta 47 (2002) 3723.
    [6] J. M. Hutchinson, Platinum Met. Rev. 16 (1972) 88.
    [7] P. Stonehart, P. N. Ross, Catal. Rev. Sci. Eng. 12 (1975) 1.
    [8] R. Liu, H. Iddir, Q. Fan, G. Hou, A. Bo, K. L. Ley, E. S. Smotkin, J. Phys. Chem. B 104 (2000) 2518.
    [9] W. F. Lin, M. S. Zei, M. Eiswirth, G. Ertl, T. Iwasita, W. Vielstich, J. Phys. Chem. B 103 (1999) 6968.
    [10] S.-Y. Huang, C.-M. Chang, C.-T. Yeh, J. Catal. 241 (2006) 400.
    [11] K.-W. Park, J.-H. Choi, S.-A. Lee, C. Pak, H. Chang, Y.-E. Sung, J. Catal. 224 (2004) 236.
    [12] M. Watanabe, S. Motoo, J. Electroanal. Chem. 60 (1975) 275.
    [13] T. Toda, H. Igagrashi, H. Uchida, M. Watanabe, J. Electrochem. Soc. 146 (1999) 3750.
    [14] K.-W. Park, J.-H. Choi, Y.-E. Sung, J. Phys. Chem. B 107 (2003) 5851.
    [15] M. T. M. Koper, T. E. Shubina, R. A. V. Santen, J. Phys. Chem. B 106 (2002) 686.
    [16] M. Watanabe, S. Motoo, J. Electroanal. Chem. 60 (1975) 267.
    [17] F. B. Mongeot, M. Scherer, B. Gleich, E. Kopatzki, R. J. Behm, Surf. Sci. 411 (1998) 249.
    [18] J. Kua, W. A. Goddard, J. Am. Chem. Soc. 121 (1999) 10928.
    [19] J. B. Goodenough, R. Manoharan, A. K. Shukla, K. V. Ramesh, Chem. Mater. 1 (1989) 391.
    [20] K.-W. Park, J.-H. Choi, B.-K. Kwon, S.-A. Lee, Y.-E. Sung, H.-Y. Ha, S.-A. Hong, H. Kim, A. Wieckowski, J. Phys. Chem. B 106 (2002) 1869.
    [21] B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, C. Chan, T. E. Mallouk, J. Phys. Chem. B 102 (1998) 9997.
    [22] S.-Y. Huang, S.-M. Chang, C.-T. Yeh, J. Phys. Chem. B 110 (2006) 234.
    [23] C. P. Hwang, C. T. Yeh, J. Catal. 182 (1999) 48.
    [24] W. L. Holstein, H. D. Rosenfeld, J. Phys. Chem. B 109 (2005) 2176.
    [25] From Joint Committee for Powder Diffraction Studies (JCPDS) data.
    [26] J. A. M. Simões, J. L. Beauchamp, Chem. Rev. 90 (1990) 629.
    [27] B.-J. Hwang, L. S. Sarma, J.-M. Chen, C.-H. Chen, S.-C. Shih, G.-R. Wang, D.-G. Liu, J.-F. Lee, M.-T. Tang, J. Am. Chem. Soc. 127 (2005) 11140.
    [28] B.-J. Hwang, C.-H. Chen, L. S. Sarma, J.-M. Chen, G.-R. Wang, M.-T. Tang, D.-G. Liu, J.-F. Lee, J. Phys. Chem. B 110 (2006) 6475.

    Appendix 1
    [1] C.-C. Chen, A. B. Herhold, C. S. Johnson, A. P. Alivisatos, Science 276 (1997) 398.
    [2] P. Z. Pawlow, Phys. Chem. 65 (1909) 545.
    [3] P. Buffat, J.-P. Borel, Phys. Rev. A 13 (1976) 2287.
    [4] C. Solliard, M. Flueli, Surf. Sci. 156 (1985) 487.
    [5] A. Moisala, A. G. Nasibulin, E. I. Kauppinen, J. Phys. Condens. Matter 15 (2003) S3011.
    [6] T. Iwasita, F. C. Nart, W. Vielstich, Ber. Bunsen-Ges. Phys. Chem. 94 (1990) 1030.
    [7] M. Watanabe, S. Motoo, J. Electroanal. Chem. 60 (1975) 267.
    [8] M. S. Nashner, A. I. Frenkel, D. Somerville, C. W. Hills, J. R. Shapley, R. G. Nuzzo, J. Am. Chem. Soc. (120) 1998 8093.
    [9] M. C. Roman-Martinez, D. Cazorla-Amoros, H. Yamashita, S. de Miguel, O. A. Scelza, Langmuir 16 (2000) 1123.
    [10] B.-J. Hwang, L. S. Sarma, J.-M. Chen, C.-H. Chen, S.-C. Shih, G.-R. Wang, D.-G. Liu, J.-F. Lee, M.-T. Tang, J. Am. Chem. Soc. 127 (2005) 11140.
    [11] S.-Y. Huang, S.-M. Chang, C.-T. Yeh, J. Phys. Chem. B 110 (2006) 234.
    [12] E. A. Stern, “X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES”, John Wiley & Sons: New York, 1988; p 3-51.
    [13] M. Newville, P. Livins, Y. Yacoby, J. J. Rehr, E. A. Stern, Phys. Rev. B 47 (1993) 14126.
    [14] A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson, Phys. Review. B 58 (1998) 7565.
    [15] W. Xu, T. Lu, C. Liu, W. Xing, J. Phys. Chem. B 109 (2005) 14325.
    [16] J. A. Horsely, J. Chem. Phys. 76 (1982) 1451.
    [17] J. McBreen, S. Mukerjee, J. Electrochem. Soc. 142 (1995) 3399.
    [18] J. B. Goodenough, R. Manoharan, A. K. Shukla, K. V. Ramesh, Chem. Mater. 1 (1989) 391.
    [19] K.-W. Park, J.-H. Choi, B.-K. Kwon, S.-A. Lee, Y.-E. Sung, H.-Y. Ha, S.-A. Hong, H. Kim, A. Wieckowski, J. Phys. Chem. B 106 (2002) 1869.
    [20] B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, C. Chan, T. E. Mallouk, J. Phys. Chem. B 102 (1998) 9997.
    [21] WebATOMS version 1.8; source code copyrighted by Bruce Ravel, 1998-2001.

    Appendix 2
    [1] M. Irie, H. Ohara, M. Tsujioka, T. Nomura, Mater. Chem. Phys. 54 (1998) 317.
    [2] P. Buffat, J. P. Borel, Phys. Rec. A 13 (1976) 2287.
    [3] T. P. Bigioni, R. L. Whetten, J. Phys. Chem. B 104 (2000) 6983.
    [4] V. Russier, M. P. Pileni, Appl. Surf. Sci. 162 (2000) 644.
    [5] A. Bednarkiewicz, M. Maczka, W. Strek, J. Hanuza, M. Karbowiak, Chem. Phys. Lett. 418 (2006) 75.
    [6] S. R. Shinde, S. D. Kulkarni, A. G. Banpurkar, R. Nawathey-Dixit, S. K. Date, S. B. Ogale, J. Appl. Phys. 88 (2000) 1566.
    [7] I. Felner, K. Nomura, I. Nowik, Phys. Rev. B 73 (2006) 064401.
    [8] T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y. W. Ok, T.-Y. Seong, C.-J. Choi, Appl. Phys. Lett. 85 (2004) 5355.
    [9] M. Luppi, S. Ossicini, Phys. Rev. B 71 (2005) 035340.
    [10] L. Wu, H. J. Wiesmann, A. R. Moodenbaugh, R. F. Klie, Y. Zhu, D. O. Welch, M. Suenaga, Phys. Rev. B 69 (2004) 125415.
    [11] M. G. Mason, Phys. Rev. B 27 (1983) 748.
    [12] L. Mo, X. Zheng, C.-T. Yeh, Chem. Commun. (2004) 1426.
    [13] C.-W. Chou, S.-J. Chu, H.-J. Chiang, C.-Y. Huang, C.-J. Lee, S.-R. Sheen, T.-P. Perng, C.-T. Yeh, J. Phys. Chem. B 105 (2001) 9113.
    [14] M. M. Gonzalez, M. Gallego, M. Valcarcel, Talanta 55 (2001) 135.
    [15] S.-Y. Huang, S.-M. Chang, C.-T. Yeh, J. Phys. Chem. B 110 (2006) 234.
    [16] W. Q. Zou, R. D. Gonzalez, Catal. Lett. 12 (1992) 73.
    [17] C. J. Gommes, K. Jong, J.-P. Pirard, S. Blacher, Langmuir 21 (2005) 12378.
    [18] B. Heinrichs, F. Noville, J. P. Schoebrechts, J. P. Pirard, J. Catal. 220 (2003) 215.
    [19] S.-C. Chou, S.-H. Lin, C.-T. Yeh, J. Chem. Soc. Faraday Trans. 91 (1995) 949.
    [20] J. Behm, V. Penka, M. G. Cattania, K. Christmann, G. Ertl, J. Chem. Phys. 78 (1983) 7486.
    [21] H. Okuyama, W. Siga, N. Takagi, M. Nishijima, T. Aruga, Sur. Sci. 401 (1998) 344.
    [22] P. C. Aben, J. Catal. 10 (1968) 224.
    [23] Z. Kiraly, A. Mastalir, F. Gerger, M. Dekany, Langmuir 14 (1998) 1281.
    [24] P. Chou, M. A. Vannice, J. Catal. 104 (1987) 1.
    [25] S.-Y. Huang, C.-M. Chang, C.-T. Yeh, J. Catal. 241 (2006) 400.
    [26] G. Alefeld, J. Volkl, “Hydrogen in Metals I. Basic Properties”, Springer-Verlag: Berlin, 1978.
    [27] B.-S. Kang, K.-S. Sohn, Physica B 217 (1996) 160.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE