研究生: |
黃暖雅 Huang, Nuan-Ya |
---|---|
論文名稱: |
產生穩定飛秒電子束與高強度輻射光源 之先進線型加速器研究 Advanced Linear Accelerator System for Generation of Femto-second Electron Beam toward Intense Radiation Sources |
指導教授: |
施宙聰
Shy, Jow-Tsong 劉偉強 Lau, Wai-Keung 濱廣幸 Hama, Hiroyiki |
口試委員: |
施宙聰
劉偉強 濱廣幸 黃衍介 羅國輝 黃清鄉 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 140 |
中文關鍵詞: | 飛秒電子束 、速度群聚 、熱陰極電子加速器 |
外文關鍵詞: | femtosecond electron beam, velocity bunching, thermionic rf gun injector |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了追尋高亮度的加速器輻射光子源,如何穩定有效的產生相對論性之超短電子脈衝是近年在電子加速器發展中的重要議題。飛秒級超短脈衝的電子束可以應用在多種先進前端的輻射光源上,例如自由電子雷射光源、逆康卜頓散射X光源、以及同調性的太赫茲光源。利用熱陰極電子腔可以產生穩定的電子源,但是熱陰極電子腔加速器的研究在過去並未深度開發。我的論文研究,便利用熱陰極電子腔加速器系統為主題,挖掘探討產生穩定超短電子脈衝的潛力及可能性。
典型的熱陰極電子腔加速器系統中,在熱陰極電子腔的下游包含了α-磁鐵以及直線加速器。我的研究指出,熱陰極電子腔所產生的電子束其空間電荷力是不可忽視的。在熱陰極電子腔系統的低能量階段,電子束的空間電荷力會伴隨著電子脈衝的壓縮過程而增長,因此造成電子脈衝在縱向相位空間上分布的變形。因此相對於過去熱陰極電子加速腔系統利用α-磁鐵的脈衝壓縮機制,我提出了利用電子束在下游傳遞波直線加速器中同時加速及壓縮的方式,以緩和伴隨電子脈衝壓縮所增益之空間電荷力。此種方式稱為所謂的在傳遞波線型加速器內的速度群聚壓縮效應,飛秒級的超快電子脈衝因為此項機制的引入將可以更有效率的穩定產生。論文裡將會探討如何在熱陰極電子腔加速器系統內產生此超短電子脈衝的策略,以及整體系統中電子束的空間電荷動力之深度分析。
為了在傳遞波直線加速器裡產生最佳化的速度群聚壓縮,我們提出了一個先進的熱陰極電子腔。此特殊的熱陰極電子腔具有兩個互相獨立的微波共振單元腔,因次兩個單元腔體的微波場強和腔體間的相對微波相位差可以被獨立調控。此項機制帶來調製電子在縱向相位空間中分布的可能性。論文中我更提出實驗結果,藉由實驗結果的分析與比較,揭示電子在縱向相位空間中分布的調控確實可以利用此先進的電子加速腔來完成。最佳化的速度群聚壓縮將可以在此特殊熱陰極電子腔加速器系統中實現。
Intense relativistic electron beam having very short bunch length of a hundred femtoseconds or less is the key for many advanced applications such as free electron laser, Compton scattered x-ray, and coherent terahertz radiation. A radio frequency (rf) gun that adopts the thermionic cathode as the electron source is with the capability to produce multi-bunched electron beam stably. Nevertheless, the study of thermionic rf gun linac system has not been well invstigated so far. In this study, we intend to explore the potential ability of a thermionic cathode rf gun linac system for the production of sub-hundred femtosecond electron bunches.
The electron beam dynamics in a thermionic rf gun linac system which consists of an α-magnet and a traveling wave accelerating structure are thoroughly examined and analyzed. It is found that the space charge effects overrule the beam dynamics seriously in the low energy side of such injector system. We thererfore consider a scheme called velocity bunching in the traveling wave accelerating structure for generation of sub-hundred femtosecond beam. We have demonstrated that thermionic rf gun possesses a promising advantage for velocity bunching. The compressed beam with bunch length of ~ 50 fs can be attained efficiently.
In order to optimize the beam longitudinal phase space for velocity bunching, a novel thermionic rf gun equipped two independent cavity cells has been developed. Since the coupling between the two cells is small, the electric field and the phase difference between two cells can be adjusted independently. This allows the flexible manipulation of electron distribution in the longitudinal phase space. The proof-of-principle experiment which shows this feasible manipulation has been demonstrated successfully in this study. The aggressive bunch compression in the thermionic rf gun linac system is made possible with this advanced electron rf gun.
[1] P. Emma, Nature Photonics 4, 641 (2010).
[2] I.V. Pogorelsky et al., Phys. Rev. ST Accel. Beams 3, 090702 (2000).
[3] G.L. Carr, M.C. Martin, W.R. McKinney, K. Jordan, G.R. Neil and G.P. Williams, Nature 420, 153 (2002).
[4] M. Tonouchi, Nature Photonics 1, 97 (2007).
[5] G.P. Gallerano and S. Biedron, in Proceedings of the 26th International Free Electron Laser Conference, Trieste, Italy, 2004, p. 216.
[6] G.A. Westenskow and J.M.J. Madey, Laser and Particle Beams 2, 223 (1984).
[7] K.J. Kim, Nucl. Instrum. Methods Phys. Res., Sect. A 275, p. 201 (1989).
[8] J. Gao, in Proceedings of EPAC’92, Berlin, Germany, 1992, p. 584.
[9] K. Togawa, H. Baba, K. Onoe, T. Inagaki, T. Shintake, and H. Matsumoto, Nucl. Instrum. Methods Phys. Res., Sect. A 528, 312 (2004).
[10] K. Togawa, T. Shintake, T. Inagaki, K. Onoe, T. Tanaka, H. Baba, and H. Matsumoto, Phys. Rev. ST Accel. Beams 10, 020703 (2007).
[11] H. Tanaka et al., in Proceedings of the 31th International Free Electron Laser Conference, Trieste, Italy, 2009, p. 769.
[12] R. Hajima, Nucl. Instrum. Methods Phys. Res., Sect. A 528 335 (2004).
[13] L. Serafini and M. Ferrario, in Physics of, and Science with, the X-ray Free-Electron Laser, AIP Conf. Proc. 2001, No. 581.
[14] S. G. Anderson et al., Phys. Rev. ST Accel. Beams 8, 014401 (2005).
[15] M. Ferrario et al., Phys. Rev. Lett. 104, 054801 (2010).
[16] P. Piot, L. Carr, W.S. Graves, and H. Loos, Phys. Rev. ST Accel. Beams 6, 033503 (2003).
[17] T. Nakazato et al., Phys. Rev. Lett. 63, 1245 (1989).
[18] M. Abo-Bakr et al., Phys. Rev. Lett. 90, 94801 (2003).
[19] R. W. Schooenlein et al., Science 287, 24 (2000).
[20] G. L. Carr et al., Nature 420, 153 (2002).
[21] E. Tanabe, M. Borland, M. C. Green, R. H. Miller, L. V. Nelson, J. N. Weaver, and H. Wiedemann, in Proceedings of Linear Accelerators 1989, Nara, Japan, p. 7.
[22] N.Y. Huang, S.S. Yang, C.C. Liang, A.P. Lee, C.S. Chou, J. H. Chen, J.Y. Hwang, W.K. Lau, in Proceedings of PAC09, Vancouver, BC, Canada, p. 2276.
[23] H. Hama, M. Kawai, S. Kashiwagi, F. Hinode, F. Miyahara, K. Nanbu, T. Muto, Y. Tanaka, X. Li and N.Y. Huang, Energy Procedia 9 (2011) 391-397.
[24] T. Tanaka, F. Hinode, M. Kawai, A. Miyamoto, K. Shinto, and H. Hama, in Proceedings of PAC’05, Knoxville, Tennessee, 2005, p. 3499.
[25] F. Miyahara, F. Hinode, M. Kawai, T. Muto, K. Nanbu, H. Oohara, Y. Tanaka, and H. Hama, in Proceedings of IPAC’10, Kyoto, Japan, 2010, p. 4509.
[26] S.B. van der Geer and M.J. de Loos, General Particle Tracer user manual, version 2.82, 2008.
[27] J. D. Jackson, Classical Electron Dynamics, 3rd edition (Willey).
[28] Carol J. Hirschhmugl, Michael Sagurton, and Gwyn P. Williams, Phys. Rev. A 44, 1316 (1991).
[29] D.A. Jaroszynski et al., Phys. Rev. Lett. 71, 3798 (1993).
[30] H. Wiedemann, Particle Accelerator Physics, 3rd edition (Springer).
[31] The properties of undulator radiation Howells, M. R., LBNL Paper LBL-34751, 2011.01.12.
[32] C. Travier, in Proceedings of Particle Accelerators, 36, p. 33 (1991).
[33] Stephen V. Benson et al., Nucl Instru. and Meth. A 250, 39 (1986).
[34] Stephen V. Benson et al., Nucl Instru. and Meth. A 296, 110 (1990).
[35] J. Xie et al., in Proceeding of PAC, San Francisco, CA, USA, 1991, p. 2020.
[36] M. Borland et al., SLAC-PUB 5054, (1990).
[37] P. Kung, H.-C. Lihn, H. Wiedemann, and D. Bocek, Phys. Rev. Lett. 73, 967 (1994).
[38] C. Thongbai et al., Nucl. Instrum. Methods Phys. Res., Sect. A 587, 130 (2008).
[39] S. Rimjaem et al., Nucl. Instrum. Methods Phys. Res., Sect. A 533, 258 (2004).
[40] H.S. Kang and G.Y. Kim, Journal of the Korean Physical Society 44, 5, 1223, (2004).
[41] J.W. Lewellen et al., in Proceedings of the XIX International LINAC Conference, Chicago, Illinois, 1999, p. 863.
[42] H. Wiedemann, D. Bocek, M. Hernadez, and C. Settakorn, J. Nucl. Mater. 248, 374 (1997).
[43] M. Borland, M. C. Green, R. H. Miller, L. V. Nelson, E. Tanabe, J. N. Weaver, and H. Wiedemann, in Proceedings of Linear accelerator conference 1990, Albuquerque, New Mexico, USA, p. 9.
[44] B. Anderberg, Å. Andersson, M. Demirkan, M. Eriksson, L. Malmgren, and S. Werin, Nucl. Instrum. Methods Phys. Res., Sect. A 491, 307 (2002).
[45] F. Oda, M. Yokoyama, A. Nakayama, H. Koike, and E. Tanabe, Nucl. Instrum. Methods Phys. Res., Sect. A 445, 404 (2000).
[46] Los Alamos Accelerator Code Group, POISSON/SUPERSISH reference manual, Los Alamos National Laboratory report LA-UR-87-126, 1987.
[47] C.B. Mckee and John M.J. Madey, Nucl. Instrum. Methode Phys. Res., Sect. A 296, p. 716 (1990).
[48] N.Y. Huang, W.K. Lau, C.C. Liang, A.P. Lee, W.C.Cheng, S.S. Yang, Nucl. Instrum. Methods Phys. Res., Sect. A 533, 258 (2004).
[49] F. V. Hartemann et al, Phys. Rev. ST Accel. Beams 8, 100702, 2005.
[50] O. Klein, and T. Nishina, Z. Phys. 52, 853 (1929).
[51] R. W. Schoenelein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Valling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, Science 274, 236 (1996).
[52] Yingchao Du et al., in Proceedings of IPAC’12, New Orleans, USA, 2012, p. 583.
[53] Kazuyuki Sakuae et al., Rev. of Sci. Instrum. 80, 123304 (2009).
[54] J.W. Lewellen and S. Milton, in Proceedings of SPIE 3154, 1997, p. 162.
[55] J.W. Lewellen, in Proceedings of the 2003 Particle Accelerator Conference, Portland, Oregon,USA, p. 2035.
[56] N.Y. Huang et al., in Proceedings of IPAC’11, San Sebastian, Spain, 2011, p. 2085
[57] A. Ando et al., J. Synchrotron Rad. 5, 342 (1998).
[58] T. Shintake, “Small Emittance Sources/Guns”, Presentation for CERN Accelerator School.
[59] K.J. Kim, Lawrence Berkeley Lab Report, LBNL-25807, 1988.
[60] X. Li et al., in Proceedings of IPAC’12,New Orleans,USA, 2012, p. 643.
[61] D. Filippetto et al., Phys. Rev. ST Accel. Beams 14, 092804 (2011).
[62] X.J. Wang, X. Qiu, and I. Ben-Zvi, Physical Review E 54, 3121 (1996).
[63] Y. Kim et al., in Proceedings of LINAC 2006, Knoxville, Tennessee, USA, p. 391.
[64] H. Hama et al., Nucl. Instrum. Methods Phys. Res., Sect. A 528, 371 (2004).
[65] H. A. Enge, Rev. Sci. Instrum. 34, 385, (1963).
[66] H. Hama and N.Y. Huang, in Proceedings of IPAC’10, Kyoto, Japan, 2010, p. 4683.