研究生: |
蔡亞庭 Tsai, Ya-Ting |
---|---|
論文名稱: |
利用氧化還原輔助合成具表面氧化改質之高鎳三元鎳鈷錳鋰離子電池正極材料 Redox-assisted Synthesis and Surface Oxidation for Ni-Rich NCM Cathode Applied in Lithium ion Batteries |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: |
蕭立殷
Hsiao, Li-Yin 林姿瑩 Lin, Tzu-Ying |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 90 |
中文關鍵詞: | 鋰離子電池 、正極材料 、高鎳材料 、自身氧化還原 、表面氧化 、鎳鈷錳 |
外文關鍵詞: | Lithium ion battery, cathode material, Ni-rich material, redox reaction, surface oxidation, NCM |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,鋰離子電池的需求隨著全球能源與環境議題被重視而大幅提高,鋰離子電池使用在不論是移動型裝置或大型的貯存系統上,更促進了多元材料的發展。高鎳三元鎳鈷錳 (NCM, LiNi1-x-yCoxMnyO2, x+y<0.2) 擁有出色的電化學表現,也被使用在油電混和車與電動車上,更被視為新世代的正極材料。然而,許多關鍵問題仍需克服。
本研究論文提出了一個新穎的方法來合成三元鎳鈷錳正極材料。高錳酸鉀(KMnO4)扮演了重要的角色,首先作為含錳的化合物,它提供了錳元素的來源。其次,身為強氧化劑與著色劑,將鈷二價離子氧化後形成均勻的鈷錳氧化物附著在氫氧化鎳表面。此外,將氫氧化鎳表層部分鎳二價原子氧化成三價,有效降低鋰鎳混排的比例,過程中更重建了表面結構,達到提升鋰離子遷入遷出順暢性的目的。此合成過程為水相反應,具有簡單、快速操作與優勢。
利用氧化還原輔助的方法可成功製備出高結晶性且無雜質的LiNi0.96Co0.03Mn0.01O2 (NCM-R)。其電化學測試結果顯示,在0.1C充放電速率下電容量達205 mAh g-1;在0.5C充放電速率下電容量達197 mAh g-1。經過100圈循環電容量仍維持93%以上。另外,為了確認表面氧化的成果,本研究也利用XPS來確認鎳元素的價態,以及利用TEM探討表面結構的變化。
Global energy and environmental challenges drive the demand for lithium ion batteries that are used in both stationary and mobile devices, thus, stimulating the blooming of various materials for lithium ion batteries. Ni-rich NCM material (LiNixCoyMn(1-x-y)O2, x>0.8) has won the title of new generation lithium ion battery. It provides remarkable electrochemical performances and is applied for hybrid and electric vehicles. Nonetheless, several critical issues are still required to be solved.
In this study a novel synthesis method based on redox reaction for Ni-rich NCM is proposed. KMnO4 is the key element and plays multiple roles in the reaction. First of all , as the manganese contained compound, it is the source of manganese. Secondly, as a strong stain agent and oxidant, it reacts with Co2+ to form a uniform precipitation covering the substrate, Ni(OH)2 particle. Moreover, as the strong oxidant, the Ni3+ content increase through oxidation treatment, which reduce the Li+/Ni2+ disorder and rebuilt the surface structure. This process is water-based, easily operated and time-saving.
The impurity-free LiNi0.96Co0.03Mn0.01O2 (NCM-R) with high crystallinity is successfully fabricated. The products synthesized by redox-assisted method provide a capacity of 197 mAh g-1 at 0.5C and 205 mAh g-1 at 0.1C. The capacity retention is 93% after 100 cycles. In addition, to confirm the effect of surface oxidation treatment, the oxidation state of nickel ion is examined by XPS and the surface structure is investigated by TEM. It is expected that this idea can be practiced for other cathode materials in the near future.
1. Jacobson, A. J.; Nazar, L. F., Intercalation Chemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry, 2011.
2. Whittingham, M. S., Electrical energy storage and intercalation chemistry. Science 1976, 192 (4244), 1126-1127.
3. Liu, C.; Neale, Z. G.; Cao, G., Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today 2016, 19 (2), 109-123.
4. Manthiram, A., A reflection on lithium-ion battery cathode chemistry. Nat Commun 2020, 11 (1), 1550.
5. Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J., Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies 2017, 10 (9), 1314.
6. Campbell, G. A., The cobalt market revisited. Mineral Economics 2019, 33 (1-2), 21-28.
7. Fu, X.; Beatty, D. N.; Gaustad, G. G.; Ceder, G.; Roth, R.; Kirchain, R. E.; Bustamante, M.; Babbitt, C.; Olivetti, E. A., Perspectives on cobalt supply through 2030 in the face of changing demand. Environmental science & technology 2020, 54 (5), 2985-2993.
8. Zhecheva, E.; Stoyanova, R., Stabilization of the layered crystal structure of LiNiO2 by Co-substitution. Solid state ionics 1993, 66 (1-2), 143-149.
9. Delmas, C.; Saadoune, I.; Rougier, A., The cycling properties of the LixNi1− yCoyO2 electrode. Journal of Power Sources 1993, 44 (1-3), 595-602.
10. You, Y.; Celio, H.; Li, J.; Dolocan, A.; Manthiram, A., Modified high‐nickel cathodes with stable surface chemistry against ambient air for lithium‐ion batteries. Angewandte Chemie International Edition 2018, 57 (22), 6480-6485.
11. Zheng, J.; Kan, W. H.; Manthiram, A., Role of Mn Content on the Electrochemical Properties of Nickel-Rich Layered LiNi0. 8–x Co0. 1Mn0. 1+ x O2 (0.0≤ x≤ 0.08) Cathodes for Lithium-Ion Batteries. ACS applied materials & interfaces 2015, 7 (12), 6926-6934.
12. Tang, Z.; Bao, J.; Du, Q.; Shao, Y.; Gao, M.; Zou, B.; Chen, C., Surface surgery of the nickel-rich cathode material LiNi0. 815Co0. 15Al0. 035O2: toward a complete and ordered surface layered structure and better electrochemical properties. ACS applied materials & interfaces 2016, 8 (50), 34879-34887.
13. Tsai, Y.-T.; Wu, C.-Y.; Duh, J.-G., Synthesis of Ni-rich NMC cathode material by redox-assisted deposition method for lithium ion batteries. Electrochimica Acta 2021, 381, 138244.
14. Trevey, J. E.; Stoldt, C. R.; Lee, S.-H., High power nanocomposite TiS2 cathodes for all-solid-state lithium batteries. Journal of The Electrochemical Society 2011, 158 (12), A1282.
15. Lyu, Y.; Wu, X.; Wang, K.; Feng, Z.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R.; Xu, L.; Zhou, J., An Overview on the Advances of LiCoO2 Cathodes for Lithium‐Ion Batteries. Advanced Energy Materials 2021, 11 (2), 2000982.
16. Yamada, S.; Fujiwara, M.; Kanda, M., Synthesis and properties of LiNiO2 as cathode material for secondary batteries. Journal of Power Sources 1995, 54 (2), 209-213.
17. Pistoia, G.; Antonini, A.; Zane, D., Synthesis of LiMnO2 and its characterization as a cathode for rechargeable Li cells. Solid State Ionics 1995, 78 (1-2), 115-122.
18. Myung, S.-T.; Maglia, F.; Park, K.-J.; Yoon, C. S.; Lamp, P.; Kim, S.-J.; Sun, Y.-K., Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. ACS Energy Letters 2016, 2 (1), 196-223.
19. Lu, J.; Lee, K. S., Spinel cathodes for advanced lithium ion batteries: a review of challenges and recent progress. Materials Technology 2016, 31 (11), 628-641.
20. Zaghib, K.; Guerfi, A.; Hovington, P.; Vijh, A.; Trudeau, M.; Mauger, A.; Goodenough, J. B.; Julien, C. M., Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends. Journal of Power Sources 2013, 232, 357-369.
21. Kim, M.; Lee, S.; Kang, B., High Energy Density Polyanion Electrode Material: LiVPO4O1–x F x (x≈ 0.25) with Tavorite Structure. Chemistry of Materials 2017, 29 (11), 4690-4699.
22. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology 2017, 12 (3), 194.
23. Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K., High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochemical Energy Reviews 2018, 1 (1), 35-53.
24. Lin, Y.-S.; Tsai, M.-C.; Duh, J.-G., Self-assembled synthesis of nanoflower-like Li4Ti5O12 for ultrahigh rate lithium-ion batteries. Journal of Power Sources 2012, 214, 314-318.
25. Huang, Y.-H.; Chang, C.-T.; Bao, Q.; Duh, J.-G.; Chueh, Y.-L., Heading towards novel superior silicon-based lithium-ion batteries: ultrasmall nanoclusters top-down dispersed over synthetic graphite flakes as binary hybrid anodes. Journal of Materials Chemistry A 2015, 3 (33), 16998-17007.
26. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7 (12), 3857-3886.
27. Marcinek, M.; Syzdek, J.; Marczewski, M.; Piszcz, M.; Niedzicki, L.; Kalita, M.; Plewa-Marczewska, A.; Bitner, A.; Wieczorek, P.; Trzeciak, T.; Kasprzyk, M.; P.Łężak; Zukowska, Z.; Zalewska, A.; Wieczorek, W., Electrolytes for Li-ion transport – Review. Solid State Ionics 2015, 276, 107-126.
28. Younesi, R.; Veith, G. M.; Johansson, P.; Edström, K.; Vegge, T., Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy & Environmental Science 2015, 8 (7), 1905-1922.
29. Goodenough, J. B.; Kim, Y., Challenges for rechargeable Li batteries. Chemistry of materials 2010, 22 (3), 587-603.
30. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society 1997, 144 (4), 1188.
31. Yamada, A.; Hosoya, M.; Chung, S.-C.; Kudo, Y.; Hinokuma, K.; Liu, K.-Y.; Nishi, Y., Olivine-type cathodes. Journal of Power Sources 2003, 119-121, 232-238.
32. Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B., Development and challenges of LiFePO 4 cathode material for lithium-ion batteries. Energy & Environmental Science 2011, 4 (2), 269-284.
33. Zhang, W.-J., Structure and performance of LiFePO4 cathode materials: A review. Journal of Power Sources 2011, 196 (6), 2962-2970.
34. Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C., Size Effects on Carbon-Free LiFePO[sub 4] Powders. Electrochemical and Solid-State Letters 2006, 9 (7).
35. Zhao, N.; Li, Y.; Zhao, X.; Zhi, X.; Liang, G., Effect of particle size and purity on the low temperature electrochemical performance of LiFePO4/C cathode material. Journal of Alloys and Compounds 2016, 683, 123-132.
36. Wang, Y.; Yang, H.; Wu, C.-Y.; Duh, J.-G., Facile and controllable one-pot synthesis of nickel-doped LiMn 0.8 Fe 0.2 PO 4 nanosheets as high performance cathode materials for lithium-ion batteries. Journal of Materials Chemistry A 2017, 5 (35), 18674-18683.
37. Song, Q.; Ou, X.; Wang, L.; Liang, G.; Wang, Z., Effect of pH value on particle morphology and electrochemical properties of LiFePO4 by hydrothermal method. Materials Research Bulletin 2011, 46 (9), 1398-1402.
38. Dinh, H.-C.; Mho, S.-i.; Yeo, I.-H., Electrochemical Analysis of Conductive Polymer-Coated LiFePO4 Nanocrystalline Cathodes with Controlled Morphology. Electroanalysis 2011, 23 (9), 2079-2086.
39. Pei, B.; Yao, H.; Zhang, W.; Yang, Z., Hydrothermal synthesis of morphology-controlled LiFePO4 cathode material for lithium-ion batteries. Journal of Power Sources 2012, 220, 317-323.
40. Dong, B.; Huang, X.; Yang, X.; Li, G.; Xia, L.; Chen, G., Rapid preparation of high electrochemical performance LiFePO4/C composite cathode material with an ultrasonic-intensified micro-impinging jetting reactor. Ultrason Sonochem 2017, 39, 816-826.
41. Gong, C.; Xue, Z.; Wen, S.; Ye, Y.; Xie, X., Advanced carbon materials/olivine LiFePO 4 composites cathode for lithium ion batteries. Journal of Power Sources 2016, 318, 93-112.
42. Wang, Y.; Wang, Y.; Hosono, E.; Wang, K.; Zhou, H., The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angewandte Chemie International Edition 2008, 47 (39), 7461-7465.
43. Wang, J.; Sun, X., Understanding and recent development of carbon coating on LiFePO 4 cathode materials for lithium-ion batteries. Energy & Environmental Science 2012, 5 (1), 5163-5185.
44. Su, C.-Y.; Wu, C.-Y.; Hsu, S.-Y.; Wu, C.-Y.; Duh, J.-G., Improving the electrochemical performance of LiMn0. 8Fe0. 2PO4 cathode with nitrogen-doped carbon via dielectric barrier discharge plasma. Materials Letters 2020, 272, 127880.
45. Zhang, M.; Garcia-Araez, N.; Hector, A. L., Understanding and development of olivine LiCoPO4cathode materials for lithium-ion batteries. Journal of Materials Chemistry A 2018, 6 (30), 14483-14517.
46. Xu, Y.-N.; Ching, W.; Chiang, Y.-M., Comparative studies of the electronic structure of LiFePO 4, FePO 4, Li 3 PO 4, LiMnPO 4, LiCoPO 4, and LiNiPO 4. Journal of applied physics 2004, 95 (11), 6583-6585.
47. Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S., LiMnPO 4–A next generation cathode material for lithium-ion batteries. Journal of Materials Chemistry A 2013, 1 (11), 3518-3539.
48. Deng, Y.; Yang, C.; Zou, K.; Qin, X.; Zhao, Z.; Chen, G., Recent advances of Mn‐Rich LiFe1‐yMnyPO4 (0.5≤ y< 1.0) cathode materials for high energy density lithium ion batteries. Advanced Energy Materials 2017, 7 (13), 1601958.
49. Yang, H.; Wang, Y.; Duh, J.-G., Developing a diamine-assisted polymerization method to synthesize nano-LiMnPO4 with N-doped carbon from polyamides for high-performance Li-ion batteries. Acs Sustainable Chemistry & Engineering 2018, 6 (10), 13302-13311.
50. Thackeray, M.; David, W.; Bruce, P.; Goodenough, J., Lithium insertion into manganese spinels. Materials Research Bulletin 1983, 18 (4), 461-472.
51. Dou, S., Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries. Ionics 2015, 21 (11), 3001-3030.
52. Yi, T.-F.; Hao, C.-L.; Yue, C.-B.; Zhu, R.-S.; Shu, J., A literature review and test: structure and physicochemical properties of spinel LiMn2O4 synthesized by different temperatures for lithium ion battery. Synthetic Metals 2009, 159 (13), 1255-1260.
53. Ouyang, C.; Shi, S.; Lei, M., Jahn–Teller distortion and electronic structure of LiMn2O4. Journal of Alloys and Compounds 2009, 474 (1-2), 370-374.
54. Yamada, A.; Tanaka, M.; Tanaka, K.; Sekai, K., Jahn–Teller instability in spinel Li–Mn–O. Journal of power sources 1999, 81, 73-78.
55. Gabrisch, H.; Yazami, R.; Fultz, B., Hexagonal to cubic spinel transformation in lithiated cobalt oxide: TEM investigation. Journal of The Electrochemical Society 2004, 151 (6), A891.
56. Saulnier, M.; Auclair, A.; Liang, G.; Schougaard, S. B., Manganese dissolution in lithium-ion positive electrode materials. Solid State Ionics 2016, 294, 1-5.
57. Lai, C.; Ye, W.; Liu, H.; Wang, W., Preparation of TiO 2-coated LiMn 2 O 4 by carrier transfer method. Ionics 2009, 15 (3), 389-392.
58. Shang, Y.; Lin, X.; Lu, X.; Huang, T.; Yu, A., Nano-TiO2 (B) coated LiMn2O4 as cathode materials for lithium-ion batteries at elevated temperatures. Electrochimica Acta 2015, 156, 121-126.
59. Piao, J.-Y.; Duan, S.-Y.; Lin, X.-J.; Tao, X.-S.; Xu, Y.-S.; Cao, A.-M.; Wan, L.-J., Surface Zn doped LiMn 2 O 4 for an improved high temperature performance. Chemical Communications 2018, 54 (42), 5326-5329.
60. Arumugam, D.; Kalaignan, G. P., Synthesis and electrochemical characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries. Journal of Electroanalytical Chemistry 2008, 624 (1-2), 197-204.
61. Guan, D.; Jeevarajan, J. A.; Wang, Y., Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin Al2O3 coatings. Nanoscale 2011, 3 (4), 1465-1469.
62. Xia, H.; Luo, Z.; Xie, J., Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries. Progress in Natural Science: Materials International 2012, 22 (6), 572-584.
63. Jin, Y.-C.; Lu, M.-I.; Wang, T.-H.; Yang, C.-R.; Duh, J.-G., Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery. Journal of power sources 2014, 262, 483-487.
64. Jin, Y.-C.; Duh, J.-G., Nanostructured LiNi0. 5Mn1. 5O4 cathode material synthesized by polymer-assisted co-precipitation method with improved rate capability. Materials Letters 2013, 93, 77-80.
65. Lee, S.; Cho, Y.; Song, H. K.; Lee, K. T.; Cho, J., Carbon‐coated single‐crystal LiMn2O4 nanoparticle clusters as cathode material for high‐energy and high‐power lithium‐ion batteries. Angewandte Chemie 2012, 124 (35), 8878-8882.
66. Kim, D. K.; Muralidharan, P.; Lee, H.-W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H.; Huggins, R. A.; Cui, Y., Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano letters 2008, 8 (11), 3948-3952.
67. Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H., Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano letters 2009, 9 (3), 1045-1051.
68. Fehse, M.; Trócoli, R.; Ventosa, E.; Hernández, E.; Sepúlveda, A.; Morata, A.; Tarancón, A., Ultrafast dischargeable LiMn2O4 thin-film electrodes with pseudocapacitive properties for microbatteries. ACS applied materials & interfaces 2017, 9 (6), 5295-5301.
69. Bellitto, C.; Bauer, E.; Righini, G.; Green, M.; Branford, W.; Antonini, A.; Pasquali, M., The effect of doping LiMn2O4 spinel on its use as a cathode in Li-ion batteries: neutron diffraction and electrochemical studies. Journal of Physics and Chemistry of Solids 2004, 65 (1), 29-37.
70. Manthiram, A.; Chemelewski, K.; Lee, E.-S., A perspective on the high-voltage LiMn 1.5 Ni 0.5 O 4 spinel cathode for lithium-ion batteries. Energy & Environmental Science 2014, 7 (4), 1339-1350.
71. Hagh, N. M.; Amatucci, G. G., A new solid-state process for synthesis of LiMn1.5Ni0.5O4−δ spinel. Journal of Power Sources 2010, 195 (15), 5005-5012.
72. Yi, T.-F.; Mei, J.; Zhu, Y.-R., Key strategies for enhancing the cycling stability and rate capacity of LiNi0. 5Mn1. 5O4 as high-voltage cathode materials for high power lithium-ion batteries. Journal of power sources 2016, 316, 85-105.
73. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
74. Jiang, Y.; Qin, C.; Yan, P.; Sui, M., Origins of capacity and voltage fading of LiCoO 2 upon high voltage cycling. Journal of Materials Chemistry A 2019, 7 (36), 20824-20831.
75. Campbell, G. A., The cobalt market revisited. Mineral Economics 2020, 33 (1), 21-28.
76. Ceder, G.; Mishra, S., The Stability of Orthorhombic and Monoclinic‐Layered LiMnO2. Electrochemical and Solid State Letters 1999, 2 (11), 550.
77. Capitaine, F.; Gravereau, P.; Delmas, C., A new variety of LiMnO2 with a layered structure. Solid State Ionics 1996, 89 (3-4), 197-202.
78. Tabuchi, M.; Ado, K.; Kobayashi, H.; Kageyama, H.; Masquelier, C.; Kondo, A.; Kanno, R., Synthesis of LiMnO2 with α‐NaMnO2‐Type Structure by a Mixed‐Alkaline Hydrothermal Reaction. Journal of the Electrochemical Society 1998, 145 (4), L49.
79. Shi-xi, Z.; Han-xing, L.; Shi-xi, O.; Qiang, L., Synthesis and performance of LiMnO 2 as cathodes for Li-ion batteries. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2003, 18 (3), 5-8.
80. Ammundsen, B.; Paulsen, J., Novel lithium‐ion cathode materials based on layered manganese oxides. Advanced Materials 2001, 13 (12‐13), 943-956.
81. Kim, J.; Amine, K., A comparative study on the substitution of divalent, trivalent and tetravalent metal ions in LiNi1− xMxO2 (M= Cu2+, Al3+ and Ti4+). Journal of power sources 2002, 104 (1), 33-39.
82. Schougaard, S. B.; Bréger, J.; Jiang, M.; Grey, C. P.; Goodenough, J. B., LiNi0. 5+ δMn0. 5–δO2—A High‐Rate, High‐Capacity Cathode for Lithium Rechargeable Batteries. Advanced Materials 2006, 18 (7), 905-909.
83. Kanno, R.; Kubo, H.; Kawamoto, Y.; Kamiyama, T.; Izumi, F.; Takeda, Y.; Takano, M., Phase relationship and lithium deintercalation in lithium nickel oxides. Journal of Solid State Chemistry 1994, 110 (2), 216-225.
84. Zuo, W.; Luo, M.; Liu, X.; Wu, J.; Liu, H.; Li, J.; Winter, M.; Fu, R.; Yang, W.; Yang, Y., Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy & Environmental Science 2020.
85. He, W.; Guo, W.; Wu, H.; Lin, L.; Liu, Q.; Han, X.; Xie, Q.; Liu, P.; Zheng, H.; Wang, L., Challenges and Recent Advances in High Capacity Li‐Rich Cathode Materials for High Energy Density Lithium‐Ion Batteries. Advanced Materials 2021, 2005937.
86. Yu, F.-D.; Que, L.-F.; Xu, C.-Y.; Wang, M.-J.; Sun, G.; Duh, J.-G.; Wang, Z.-B., Dual conductive surface engineering of Li-Rich oxides cathode for superior high-energy-density Li-Ion batteries. Nano Energy 2019, 59, 527-536.
87. Seo, D. H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G., The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat Chem 2016, 8 (7), 692-7.
88. Xu, J.; Lin, F.; Doeff, M. M.; Tong, W., A review of Ni-based layered oxides for rechargeable Li-ion batteries. Journal of Materials Chemistry A 2017, 5 (3), 874-901.
89. Burns, R. G.; Burns, R. G., Mineralogical applications of crystal field theory. Cambridge university press: 1993.
90. Ohnuma, T.; Kobayashi, T., Correction: X-ray absorption near edge structure simulation of LiNi0. 5Co0. 2Mn0. 3O2 via first-principles calculation. RSC Advances 2020, 10 (7), 3882-3882.
91. Manthiram, A.; Murugan, A. V.; Sarkar, A.; Muraliganth, T., Nanostructured electrode materials for electrochemical energy storage and conversion. Energy & Environmental Science 2008, 1 (6), 621-638.
92. Yan, W.; Yang, S.; Huang, Y.; Yang, Y.; Yuan, G., A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries. Journal of Alloys and Compounds 2020, 819, 153048.
93. Manthiram, A.; Song, B.; Li, W., A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Materials 2017, 6, 125-139.
94. Märker, K.; Reeves, P. J.; Xu, C.; Griffith, K. J.; Grey, C. P., Evolution of Structure and Lithium Dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) Cathodes during Electrochemical Cycling. Chemistry of Materials 2019, 31 (7), 2545-2554.
95. Guilmard, M.; Pouillerie, C.; Croguennec, L.; Delmas, C., Structural and electrochemical properties of LiNi0. 70Co0. 15Al0. 15O2. Solid State Ionics 2003, 160 (1-2), 39-50.
96. Park, G.-T.; Ryu, H.-H.; Park, N.-Y.; Yoon, C. S.; Sun, Y.-K., Tungsten doping for stabilization of Li [Ni0. 90Co0. 05Mn0. 05] O2 cathode for Li-ion battery at high voltage. Journal of Power Sources 2019, 442, 227242.
97. Delmas, C.; Saadoune, I., Electrochemical and physical properties of the LixNi1− yCoyO2 phases. Solid State Ionics 1992, 53, 370-375.
98. Zhong, S.-W.; Zhao, Y.-J.; Fang, L.; Yan, L.; Yang, H.; Li, P.-Z.; Jia, M.; Liu, Q.-G., Characteristics and electrochemical performance of cathode material Co-coated LiNiO2 for Li-ion batteries. Transactions of Nonferrous Metals Society of China 2006, 16 (1), 137-141.
99. Rougier, A.; Saadoune, I.; Gravereau, P.; Willmann, P.; Delmasa, C., Effect of cobalt substitution on cationic distribution in LiNi1− y CoyO2 electrode materials. Solid State Ionics 1996, 90 (1-4), 83-90.
100. Caurant, D.; Baffier, N.; Garcia, B.; Pereira-Ramos, J., Synthesis by a soft chemistry route and characterization of LiNixCo1− xO2 (0≤ x≤ 1) cathode materials. Solid State Ionics 1996, 91 (1-2), 45-54.
101. Ohzuku, T.; Makimura, Y., Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries. Chemistry letters 2001, 30 (8), 744-745.
102. Guilmard, M.; Croguennec, L.; Delmas, C., Effects of manganese substitution for nickel on the structural and electrochemical properties of LiNiO2. Journal of the Electrochemical Society 2003, 150 (10), A1287.
103. Kasnatscheew, J.; Evertz, M.; Streipert, B.; Wagner, R.; Nowak, S.; Cekic Laskovic, I.; Winter, M., Changing established belief on capacity fade mechanisms: thorough investigation of LiNi1/3Co1/3Mn1/3O2 (NCM111) under high voltage conditions. The Journal of Physical Chemistry C 2017, 121 (3), 1521-1529.
104. Lv, C.; Yang, J.; Peng, Y.; Duan, X.; Ma, J.; Li, Q.; Wang, T., 1D Nb-doped LiNi1/3Co1/3Mn1/3O2 nanostructures as excellent cathodes for Li-ion battery. Electrochimica Acta 2019, 297, 258-266.
105. Dixit, M.; Kosa, M.; Lavi, O. S.; Markovsky, B.; Aurbach, D.; Major, D. T., Thermodynamic and kinetic studies of LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode material for Li-ion batteries using first principles. Physical Chemistry Chemical Physics 2016, 18 (9), 6799-6812.
106. Xia, L.; Qiu, K.; Gao, Y.; He, X.; Zhou, F., High potential performance of Cerium-doped LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode material for Li-ion battery. Journal of Materials Science 2015, 50 (7), 2914-2920.
107. Huang, Y.; Zhu, H.; Zhu, H.; Zhang, J.; Ren, Y.; Liu, Q., Insight into the capacity decay mechanism of cycled LiNi0. 5Co0. 2Mn0. 3O2 cathodes via in situ x-ray diffraction. Nanotechnology 2021, 32 (29), 295701.
108. Sun, G.; Yin, X.; Yang, W.; Song, A.; Jia, C.; Yang, W.; Du, Q.; Ma, Z.; Shao, G., The effect of cation mixing controlled by thermal treatment duration on the electrochemical stability of lithium transition-metal oxides. Phys Chem Chem Phys 2017, 19 (44), 29886-29894.
109. Li, H. H.; Yabuuchi, N.; Meng, Y. S.; Kumar, S.; Breger, J.; Grey, C. P.; Shao-Horn, Y., Changes in the Cation Ordering of Layered O3 Li x Ni0. 5Mn0. 5O2 during Electrochemical Cycling to High Voltages: An Electron Diffraction Study. Chemistry of materials 2007, 19 (10), 2551-2565.
110. Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T.-C.; Asta, M. D.; Xin, H. L.; Doeff, M. M., Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nature communications 2014, 5 (1), 1-9.
111. Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G., Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. science 2014, 343 (6170), 519-522.
112. Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J., Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed Engl 2015, 54 (15), 4440-57.
113. Cho, D.-H.; Jo, C.-H.; Cho, W.; Kim, Y.-J.; Yashiro, H.; Sun, Y.-K.; Myung, S.-T., Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2. Journal of The Electrochemical Society 2014, 161 (6), A920-A926.
114. Hou, P.; Yin, J.; Ding, M.; Huang, J.; Xu, X., Surface/Interfacial Structure and Chemistry of High-Energy Nickel-Rich Layered Oxide Cathodes: Advances and Perspectives. Small 2017, 13 (45).
115. Jung, R.; Morasch, R.; Karayaylali, P.; Phillips, K.; Maglia, F.; Stinner, C.; Shao-Horn, Y.; Gasteiger, H. A., Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries. Journal of The Electrochemical Society 2018, 165 (2), A132.
116. Xu, Z.; Rahman, M. M.; Mu, L.; Liu, Y.; Lin, F., Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries. Journal of Materials Chemistry A 2018, 6 (44), 21859-21884.
117. Yoon, C. S.; Jun, D.-W.; Myung, S.-T.; Sun, Y.-K., Structural Stability of LiNiO2 Cycled above 4.2 V. ACS Energy Letters 2017, 2 (5), 1150-1155.
118. Yan, P.; Zheng, J.; Gu, M.; Xiao, J.; Zhang, J.-G.; Wang, C.-M., Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nature communications 2017, 8 (1), 1-9.
119. Liu, H.; Wolf, M.; Karki, K.; Yu, Y.-S.; Stach, E. A.; Cabana, J.; Chapman, K. W.; Chupas, P. J., Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano letters 2017, 17 (6), 3452-3457.
120. Fan, X.; Hu, G.; Zhang, B.; Ou, X.; Zhang, J.; Zhao, W.; Jia, H.; Zou, L.; Li, P.; Yang, Y., Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 2020, 70.
121. Rodrigues, M.-T. F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F. N.; Kato, K.; Joyner, J.; Ajayan, P. M., A materials perspective on Li-ion batteries at extreme temperatures. nature energy 2017, 2 (8), 1-14.
122. Kim, U.-H.; Myung, S.-T.; Yoon, C. S.; Sun, Y.-K., Extending the battery life using an Al-doped Li [Ni0. 76Co0. 09Mn0. 15] O2 cathode with concentration gradients for lithium ion batteries. ACS Energy Letters 2017, 2 (8), 1848-1854.
123. Lv, Y.; Cheng, X.; Qiang, W.; Huang, B., Improved electrochemical performances of Ni-rich LiNi0. 83Co0. 12Mn0. 05O2 by Mg-doping. Journal of Power Sources 2020, 450, 227718.
124. Zhang, D.; Liu, Y.; Wu, L.; Feng, L.; Jin, S.; Zhang, R.; Jin, M., Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode material. Electrochimica Acta 2019, 328, 135086.
125. Sim, S.-J.; Lee, S.-H.; Jin, B.-S.; Kim, H.-S., Improving the electrochemical performances using a V-doped Ni-rich NCM cathode. Scientific reports 2019, 9 (1), 1-8.
126. Wu, C.-Y.; Bao, Q.; Tsai, Y.-T.; Duh, J.-G., Tuning (003) interplanar space by boric acid co-sintering to enhance Li+ storage and transfer in Li (Ni0. 8Co0. 1Mn0. 1) O2 cathode. Journal of Alloys and Compounds 2021, 865, 158806.
127. Kim, H.; Kim, S.-B.; Park, D.-H.; Park, K.-W., Fluorine-Doped LiNi0. 8Mn0. 1Co0. 1O2 Cathode for High-Performance Lithium-Ion Batteries. Energies 2020, 13 (18), 4808.
128. Chen, Z.; Gong, X.; Zhu, H.; Cao, K.; Liu, Q.; Liu, J.; Li, L.; Duan, J., High performance and structural stability of K and Cl co-doped LiNi0. 5Co0. 2Mn0. 3O2 cathode materials in 4.6 voltage. Frontiers in chemistry 2019, 6, 643.
129. Cho, S.-W.; Ryu, K.-S., Sulfur anion doping and surface modification with LiNiPO4 of a LiNi0. 5Mn0. 3Co0. 2O2 cathode. Materials Chemistry and Physics 2012, 135 (2-3), 533-540.
130. Herzog, M. J.; Esken, D.; Janek, J., Improved Cycling Performance of High‐Nickel NMC by Dry Powder Coating with Nanostructured Fumed Al2O3, TiO2, and ZrO2: A Comparison. Batteries & Supercaps 2021.
131. Ye, Z.; Qiu, L.; Yang, W.; Wu, Z.; Liu, Y.; Wang, G.; Song, Y.; Zhong, B.; Guo, X., Nickel-Rich Layered Cathode Materials for Lithium-Ion Batteries. Chemistry 2021, 27 (13), 4249-4269.
132. Yang, H.; Wu, K.; Hu, G.; Peng, Z.; Cao, Y.; Du, K., Design and synthesis of double-functional polymer composite layer coating to enhance the electrochemical performance of the Ni-rich cathode at the upper cutoff voltage. ACS applied materials & interfaces 2019, 11 (8), 8556-8566.
133. He, J.-r.; Chen, Y.-f.; Li, P.-j.; Wang, Z.-g.; Qi, F.; Liu, J.-b., Synthesis and electrochemical properties of graphene-modified LiCo 1/3 Ni 1/3 Mn 1/3 O 2 cathodes for lithium ion batteries. RSC Advances 2014, 4 (5), 2568-2572.
134. Gan, Q.; Qin, N.; Zhu, Y.; Huang, Z.; Zhang, F.; Gu, S.; Xie, J.; Zhang, K.; Lu, L.; Lu, Z., Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 with enhanced cyclability for lithium-ion batteries. ACS applied materials & interfaces 2019, 11 (13), 12594-12604.
135. Cao, Y.; Qi, X.; Hu, K.; Wang, Y.; Gan, Z.; Li, Y.; Hu, G.; Peng, Z.; Du, K., Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS applied materials & interfaces 2018, 10 (21), 18270-18280.
136. Xiong, X.; Wang, Z.; Yin, X.; Guo, H.; Li, X., A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0. 8Co0. 1Mn0. 1O2 cathode materials. Materials Letters 2013, 110, 4-9.
137. Hu, G.; Zhang, M.; Wu, L.; Peng, Z.; Du, K.; Cao, Y., Effects of Li2SiO3 coating on the performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode material for lithium ion batteries. Journal of Alloys and Compounds 2017, 690, 589-597.
138. Zou, P.; Lin, Z.; Fan, M.; Wang, F.; Liu, Y.; Xiong, X., Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. Applied Surface Science 2020, 504, 144506.
139. Yang, C.; Zhou, L.; Hu, W.; Wei, W., Mitigating Particle Cracking and Surface Deterioration for Better Cycle Stability by Encapsulating NCM811 primary particles into LiBO2. Int. J. Electrochem. Sci 2021, 16, 150880.
140. Du, M.; Yang, P.; He, W.; Bie, S.; Zhao, H.; Yin, J.; Zou, Z.; Liu, J., Enhanced high-voltage cycling stability of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode coated with Li2O–2B2O3. Journal of Alloys and Compounds 2019, 805, 991-998.
141. Zhu, J.; Li, Y.; Xue, L.; Chen, Y.; Lei, T.; Deng, S.; Cao, G., Enhanced electrochemical performance of Li3PO4 modified Li [Ni0. 8Co0. 1Mn0. 1] O2 cathode material via lithium-reactive coating. Journal of Alloys and Compounds 2019, 773, 112-120.
142. Jo, C.-H.; Cho, D.-H.; Noh, H.-J.; Yashiro, H.; Sun, Y.-K.; Myung, S. T., An effective method to reduce residual lithium compounds on Ni-rich Li [Ni 0.6 Co 0.2 Mn 0.2] O 2 active material using a phosphoric acid derived Li 3 PO 4 nanolayer. Nano Research 2015, 8 (5), 1464-1479.
143. Sun, Y.-K.; Myung, S.-T.; Kim, M.-H.; Prakash, J.; Amine, K., Synthesis and characterization of Li [(Ni0. 8Co0. 1Mn0. 1) 0.8 (Ni0. 5Mn0. 5) 0.2] O2 with the microscale core− shell structure as the positive electrode material for lithium batteries. Journal of the American Chemical Society 2005, 127 (38), 13411-13418.
144. Liao, J.-Y.; Oh, S.-M.; Manthiram, A., Core/double-shell type gradient Ni-rich LiNi0. 76Co0. 10Mn0. 14O2 with high capacity and long cycle life for lithium-ion batteries. ACS applied materials & interfaces 2016, 8 (37), 24543-24549.
145. Sun, Y.-K.; Myung, S.-T.; Park, B.-C.; Prakash, J.; Belharouak, I.; Amine, K., High-energy cathode material for long-life and safe lithium batteries. Nature materials 2009, 8 (4), 320-324.
146. Yuan, K.; Li, N.; Ning, R.; Shen, C.; Hu, N.; Bai, M.; Zhang, K.; Tian, Z.; Shao, L.; Hu, Z., Stabilizing surface chemical and structural Ni-rich cathode via a non-destructive surface reinforcement strategy. Nano Energy 2020, 78, 105239.
147. Zhang, C.; Liu, M.; Pan, G.; Liu, S.; Liu, D.; Chen, C.; Su, J.; Huang, T.; Yu, A., Enhanced Electrochemical Performance of LiNi0. 8Co0. 1Mn0. 1O2 Cathode for Lithium-Ion Batteries by Precursor Preoxidation. ACS Applied Energy Materials 2018, 1 (8), 4374-4384.
148. Zhang, S. S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources 2006, 162 (2), 1379-1394.
149. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J., Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science 2016, 9 (6), 1955-1988.
150. Yim, T.; Jang, S. H.; Han, Y.-K., Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material. Journal of Power Sources 2017, 372, 24-30.
151. Nguyen, C. C.; Lucht, B. L., Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries. Journal of the Electrochemical Society 2014, 161 (12), A1933.
152. Beltrop, K.; Klein, S.; Nölle, R.; Wilken, A.; Lee, J. J.; Köster, T. K.-J.; Reiter, J.; Tao, L.; Liang, C.; Winter, M., Triphenylphosphine oxide as highly effective electrolyte additive for graphite/NMC811 lithium ion cells. Chemistry of materials 2018, 30 (8), 2726-2741.
153. Xia, J.; Harlow, J.; Petibon, R.; Burns, J.; Chen, L.; Dahn, J., Comparative study on methylene methyl disulfonate (MMDS) and 1, 3-propane sultone (PS) as electrolyte additives for Li-ion batteries. Journal of The Electrochemical Society 2014, 161 (4), A547.
154. Xu, L.; Zhou, F.; Liu, B.; Zhou, H.; Zhang, Q.; Kong, J.; Wang, Q., Progress in Preparation and Modification of LiNi0.6Mn0.2Co0.2O2 Cathode Material for High Energy Density Li-Ion Batteries. International Journal of Electrochemistry 2018, 2018, 1-12.
155. Zheng, J.; Wu, X.; Yang, Y., Improved electrochemical performance of Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 cathode material by fluorine incorporation. Electrochimica Acta 2013, 105, 200-208.
156. Lee, S.-W.; Kim, H.; Kim, M.-S.; Youn, H.-C.; Kang, K.; Cho, B.-W.; Roh, K. C.; Kim, K.-B., Improved electrochemical performance of LiNi0. 6Co0. 2Mn0. 2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. Journal of Power Sources 2016, 315, 261-268.
157. Etacheri, V., Sol-Gel Processed Cathode Materials for Lithium-Ion Batteries. In Sol-Gel Materials for Energy, Environment and Electronic Applications, Springer: 2017; pp 155-195.
158. Van Bommel, A.; Dahn, J., Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia. Chemistry of Materials 2009, 21 (8), 1500-1503.
159. Dong, H.; Koenig, G. M., A review on synthesis and engineering of crystal precursors produced via coprecipitation for multicomponent lithium-ion battery cathode materials. CrystEngComm 2020, 22 (9), 1514-1530.
160. Jhang, R.-H.; Yang, C.-Y.; Shih, M.-C.; Ho, J.-Q.; Tsai, Y.-T.; Chen, C.-H., Redox-assisted multicomponent deposition of ultrathin amorphous metal oxides on arbitrary substrates: highly durable cobalt manganese oxyhydroxide for efficient oxygen evolution. Journal of Materials Chemistry A 2018, 6 (37), 17915-17928.
161. Xu, B.; Qian, D.; Wang, Z.; Meng, Y. S., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports 2012, 73 (5-6), 51-65.
162. Noh, H.-J.; Youn, S.; Yoon, C. S.; Sun, Y.-K., Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources 2013, 233, 121-130.
163. Hwang, S.; Chang, W.; Kim, S. M.; Su, D.; Kim, D. H.; Lee, J. Y.; Chung, K. Y.; Stach, E. A., Investigation of changes in the surface structure of Li x Ni0. 8Co0. 15Al0. 05O2 cathode materials induced by the initial charge. Chemistry of materials 2014, 26 (2), 1084-1092.
164. Kim, J.-H.; Ryu, H.-H.; Kim, S. J.; Yoon, C. S.; Sun, Y.-K., Degradation Mechanism of Highly Ni-Rich Li [Ni x Co y Mn1–x–y] O2 Cathodes with x> 0.9. ACS applied materials & interfaces 2019, 11 (34), 30936-30942.
165. Wu, F.; Tian, J.; Su, Y.; Wang, J.; Zhang, C.; Bao, L.; He, T.; Li, J.; Chen, S., Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS applied materials & interfaces 2015, 7 (14), 7702-7708.
166. Zhang, M.; Zhao, H.; Tan, M.; Liu, J.; Hu, Y.; Liu, S.; Shu, X.; Li, H.; Ran, Q.; Cai, J., Yttrium modified Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage. Journal of Alloys and Compounds 2019, 774, 82-92.
167. Kudielka, A.; Schmid, M.; Klein, B. P.; Pietzonka, C.; Gottfried, J. M.; Harbrecht, B., Nanocrystalline cobalt hydroxide oxide: Synthesis and characterization with SQUID, XPS, and NEXAFS. Journal of Alloys and Compounds 2020, 824, 153925.
168. Ilton, E. S.; Post, J. E.; Heaney, P. J.; Ling, F. T.; Kerisit, S. N., XPS determination of Mn oxidation states in Mn (hydr) oxides. Applied Surface Science 2016, 366, 475-485.
169. Hwang, S.; Kim, S. M.; Bak, S.-M.; Chung, K. Y.; Chang, W., Investigating the Reversibility of Structural Modifications of Li x Ni y Mn z Co1–y–z O2 Cathode Materials during Initial Charge/Discharge, at Multiple Length Scales. Chemistry of Materials 2015, 27 (17), 6044-6052.
170. Kasnatscheew, J.; Evertz, M.; Streipert, B.; Wagner, R.; Klöpsch, R.; Vortmann, B.; Hahn, H.; Nowak, S.; Amereller, M.; Gentschev, A.-C., The truth about the 1st cycle Coulombic efficiency of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) cathodes. Physical chemistry chemical physics 2016, 18 (5), 3956-3965.
171. Feng, F.; Hu, X.; Hu, L.; Hu, F.; Li, Y.; Zhang, L., Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs. Renewable and Sustainable Energy Reviews 2019, 112, 102-113.
172. Ryu, H.-H.; Park, K.-J.; Yoon, C. S.; Sun, Y.-K., Capacity fading of Ni-rich Li [Ni x Co y Mn1–x–y] O2 (0.6≤ x≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chemistry of materials 2018, 30 (3), 1155-1163.
173. Xu, C.; Märker, K.; Lee, J.; Mahadevegowda, A.; Reeves, P. J.; Day, S. J.; Groh, M. F.; Emge, S. P.; Ducati, C.; Mehdi, B. L., Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nature Materials 2021, 20 (1), 84-92.
174. Li, H.; Zhou, P.; Liu, F.; Li, H.; Cheng, F.; Chen, J., Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries. Chemical science 2019, 10 (5), 1374-1379.
175. Chen, J.; Yang, H.; Li, T.; Liu, C.; Tong, H.; Chen, J.; Liu, Z.; Xia, L.; Chen, Z.; Duan, J., The effects of reversibility of H2-H3 phase transition on Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Frontiers in chemistry 2019, 7, 500.
176. Choi, W.; Shin, H.-C.; Kim, J. M.; Choi, J.-Y.; Yoon, W.-S., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology 2020, 11 (1), 1-13.
177. Vedalakshmi, R.; Saraswathy, V.; Song, H.-W.; Palaniswamy, N., Determination of diffusion coefficient of chloride in concrete using Warburg diffusion coefficient. Corrosion Science 2009, 51 (6), 1299-1307.