研究生: |
阮氏翹娘 Thi Kieu Nuong Nguyen |
---|---|
論文名稱: |
運用CRISPR活化系統用於調控脂肪幹細胞內長鏈非編碼核糖核酸及改促進骨再生 CRISPR Activation of Long Non-coding RNA in Mesenchymal Stem Cell for Bone Regeneration |
指導教授: |
胡育誠
Hu, Yu-Chen |
口試委員: |
宋信文
Sung, Hsing-Wen 陳韻晶 Chen, Yunching 張毓翰 Chang, Yu-Han 林進裕 Lin, Chin-Yu |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 111 |
中文關鍵詞: | 進骨再生 |
外文關鍵詞: | Bone healing, CRISPRa, DANCR, H19, dCas9-VPR, Split dCas12a, lncRNA |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大範圍的骨缺陷在目前臨床骨科醫學依然是一個難題。儘管移植能分化至軟骨組織的ASC 和BMSC可以增進修復,但是這種以細胞為基礎的療法距離臨床仍有一大步,因此需要研發更新的方法來促進幹細胞分化,應用在大範圍骨缺陷的治療。近年來,長鏈非編碼RNA (lncRNAs)已經被視為調控基因的重要因子,lncRNAs帶有超過200個核甘酸的並且可以被RNA polymerase II轉錄,但不會轉譯,而lncRNAs在細胞分裂與分化扮演著多種的角色。DANCR和H19這兩個lncRNAs被發現可以促進軟骨再生,但是目前並沒有應用在幹細胞軟骨修復的研究,且機制並未明了。
CRISPR activation (CRISPRa)是一個非常好建構的系統並且可以啟動細胞的內源基因表現,讓我們可以對於在細胞核內的lncRNA進行調控,這能突破以往無法直接過表現lncRNA的瓶頸。在這篇研究當中,我們建構兩套CRISPR系統分別在rASC和BMSC啟動DANCR 和H19。於第一套系統中,我們建構出不同的桿狀病毒載體來表現不同的dCas9,並分別連接三個複合啟動子包含VP64, p65 和 Rta (SadCas9-VPR, SpdCas9-VPR, St1dCas9-VPR, NmCas9-VPR),我們發現在四種不同的dCas9中,SadCas9-VPR 能最有效的在rASC啟動DANCR。在第二套系統中,我們建構的Split dCas12a將dCas12a 分成N片段和C片段,兩片段分別連接兩個p65-HSF1啟動子,經過表現後N片段和C片段能夠自動組成一個帶有四個啟動子的全長dCas12a來啟動rBMSC的H19。我們更進一步的發現DANCR和H19在兩套CRISPR的啟動調控下,能夠刺激一些往軟骨組織分化的相關基因的表現,如:Sox9, Col2a1和Acan。另一方面,我們進一步的利用GAG和II型膠原蛋白檢測證實軟骨能在3D骨架形成。最重要的是,我們將基因調控過的rASCS和rBMSC移植進入SD大鼠後,能夠促進頭蓋骨的修復。綜合而言,我們的成果展現出我們的兩套CRISPR系統能夠調控lncRNAs來誘導rASC和BMSC往軟骨組織分化,並且提供一個有潛力的療法應用在骨修復。
Healing of large calvarial bone defects in adults remains to be a challenging task. Although implantation of adipose-derived stem cell (ASC) or bone marrow stem cell (BMSC) that differentiate towards chondrogenic lineage improves the healing process, this cell-based therapy is still far from perfect, thus requiring new methods to stimulate cell differentiation so as to further augment calvarial bone healing. In recent years, long non-coding RNAs (lncRNAs) have been recognized as essential elements of gene regulation. lncRNAs with over 200 nucleotides in length are transcribed by RNA polymerase II, but are not translated. lncRNAs regulate various cellular processes such as cell proliferation development and differentiation via diverse mechanisms. lncRNA Differentiation Antagonizing Non‑protein Coding RNA (DANCR) and lncRNA H19 (H19) were exposed to enhance chondrogenic differentiation, but its function in mesenchymal stem cells and bone regeneration have yet been explored.
Clustered Regularly Interspaced Short Palindromic Repeats activation (CRISPRa) is easy to construct and may activate lncRNA expression from the endogenous genomic locus, allowing us to carry out the function of lncRNAs which are located in nucleus and that cannot be readily evaluated by traditional overexpression method. In this study, we constructed two CRISPRa systems to activate DANCR and H19 expression in rASC and BMSC, respectively. Firstly, we constructed different baculovirus vectors to express different dCas9 orthologues by fusing a tripartite transcription activator domain consisting of VP64, p65 and Rta (SadCas9-VPR, SpdCas9-VPR, St1dCas9-VPR, NmCas9-VPR) and compared the efficient activation of DANCR using the 4 different dCas9-VPR. We found that among the 4 different dCas9-VPR systems, SadCas9-VPR is more efficient activation of DANCR in rat ASC (rASC). Secondly, we constructed the Split dCas12a system where dCas12a is expressed as N domain and C domains, each of which is fused with two transcription activators consisting of P65 and HSF1(P65- HSF1). After expression, the split N and C domains spontaneously assemble to become a full-length dCas12a with 4 synthetic transcription activators, resulting in potentiating H19 activation effects in rat BMSC (rBMSC). Furthermore, we showed that CRISPR-mediated upregulation of DANCR and H19 stimulated the expression of chondrogenic differentiation markers such as SRY-box transcription factor 9 (Sox9), collagen type II alpha 1 chain (Col2a1) and aggrecan (Acan). On the order hand, the histological analysis as well as Glycosaminoglycans (GAG) and collagen type 2 (Col II) content quantification further confirmed the cartilage formation in three-dimensional (3D) culture. Importantly, implantation of the engineered rASCs and rBMSC into Sprague Dawley (SD) rats considerable promoted calvarial bone healing after transplantation. Taken together, our results demonstrated that CRISPR-mediated lncRNAs drives rASC and BMSC towards chondrogenesis lineage and offer a potential therapeutic target for bone regeneration.
1. Mohamed, A.M., An overview of bone cells and their regulating factors of differentiation. The Malaysian journal of medical sciences: MJMS, 2008. 15(1): p. 4.
2. Santo, V.E., et al., Controlled release strategies for bone, cartilage, and osteochondral engineering—part I: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Engineering Part B: Reviews, 2013. 19(4): p. 308-326.
3. Jimi, E., et al., The current and future therapies of bone regeneration to repair bone defects. Int J Dent, 2012. 2012: p. 148261.
4. Hambli, R., Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Front Bioeng Biotechnol, 2014. 2: p. 6.
5. Verma, I.M. and M.D. Weitzman, Gene therapy: twenty-first century medicine. Annu Rev Biochem, 2005. 74: p. 711-38.
6. Chen, F.M. and X. Liu, Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci, 2016. 53: p. 86-168.
7. Levi, B. and M.T. Longaker, Concise review: adipose-derived stromal cells for skeletal regenerative medicine. Stem Cells, 2011. 29(4): p. 576-82.
8. Carofino, B.C. and J.R. Lieberman, Gene therapy applications for fracture-healing. J Bone Joint Surg Am, 2008. 90 Suppl 1: p. 99-110.
9. Nauth, A., et al., Gene therapy for fracture healing. J Orthop Trauma, 2010. 24 Suppl 1: p. S17-24.
10. Wang, E.A., et al., Recombinant human bone morphogenetic protein induces bone formation. Proceedings of the National Academy of Sciences of the United States of America, 1990. 87(6): p. 2220-2224.
11. Hsu, W.K., et al., Lentiviral-mediated BMP-2 gene transfer enhances healing of segmental femoral defects in rats. Bone, 2007. 40(4): p. 931-938.
12. Lee, S.-J., et al., Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials, 2010. 31(21): p. 5652-5659.
13. Pathak, A., S. Patnaik, and K.C. Gupta, Recent trends in non-viral vector-mediated gene delivery. Biotechnol J, 2009. 4(11): p. 1559-72.
14. Distler Jörg, H.W., et al., Nucleofection: a new, highly efficient transfection method for primary human keratinocytes*. Experimental Dermatology, 2005. 14(4): p. 315-320.
15. Park, J., et al., Bone regeneration in critical size defects by cell-mediated BMP-2 gene transfer: a comparison of adenoviral vectors and liposomes. Gene Ther, 2003. 10(13): p. 1089-98.
16. Dubruel, P., et al., Physicochemical and biological evaluation of cationic polymethacrylates as vectors for gene delivery. European journal of pharmaceutical sciences, 2003. 18(3-4): p. 211-220.
17. Thomas, C.E., A. Ehrhardt, and M.A. Kay, Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics, 2003. 4(5): p. 346-358.
18. Gerdes, C.A., M.G. Castro, and P.R. Löwenstein, Strong promoters are the key to highly efficient, noninflammatory and noncytotoxic adenoviral-mediated transgene delivery into the brain in vivo. Molecular Therapy, 2000. 2(4): p. 330-338.
19. Federico, M. and A.H. Katherine, Immune Responses to AAV in Clinical Trials. Current Gene Therapy, 2011. 11(4): p. 321-330.
20. Au, S., W. Wu, and N. Pante, Baculovirus nuclear import: open, nuclear pore complex (NPC) sesame. Viruses, 2013. 5(7): p. 1885-900.
21. Airenne, K.J., et al., In vivo application and tracking of baculovirus. Curr Gene Ther, 2010. 10(3): p. 187-94.
22. Wang, S. and G. Balasundaram, Potential cancer gene therapy by baculoviral transduction. Curr Gene Ther, 2010. 10(3): p. 214-25.
23. Ho, Y.C., et al., Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells. J Gene Med, 2005. 7(7): p. 860-8.
24. Lin, C.Y., et al., The role of adipose-derived stem cells engineered with the persistently expressing hybrid baculovirus in the healing of massive bone defects. Biomaterials, 2011. 32(27): p. 6505-14.
25. Chen, H.C., et al., Combination of baculovirus-expressed BMP-2 and rotating-shaft bioreactor culture synergistically enhances cartilage formation. Gene Ther, 2008. 15(4): p. 309-17.
26. Hu, Y.-C., K. Yao, and T.-Y. Wu, Baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert review of vaccines, 2008. 7(3): p. 363-371.
27. Cheshenko, N., et al., A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene therapy, 2001. 8(11): p. 846-854.
28. Makarova, K.S., et al., An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 2015. 13(11): p. 722-36.
29. Shmakov, S., et al., Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol Cell, 2015. 60(3): p. 385-97.
30. van der Oost, J., et al., Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nature Reviews Microbiology, 2014. 12: p. 479.
31. Barrangou, R. and L.A. Marraffini, CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Molecular cell, 2014. 54(2): p. 234-244.
32. Deltcheva, E., et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011. 471(7340): p. 602-7.
33. Jinek, M., et al., A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science, 2012. 337(6096): p. 816-821.
34. Bolotin, A., et al., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005. 151(8): p. 2551-2561.
35. Shah, S.A., et al., Protospacer recognition motifs: mixed identities and functional diversity. RNA biology, 2013. 10(5): p. 891-899.
36. Hsu, P.D., et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 2013. 31(9): p. 827-32.
37. Ran, F.A., et al., In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015. 520(7546): p. 186-191.
38. Horvath, P., et al., Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol, 2008. 190(4): p. 1401-12.
39. Zhang, Y., et al., Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell, 2013. 50(4): p. 488-503.
40. Gasiunas, G., et al., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A, 2012. 109(39): p. E2579-86.
41. Mali, P., et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol, 2013. 31(9): p. 833-8.
42. Shen, B., et al., Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nature methods, 2014. 11(4): p. 399.
43. Ran, F.A., et al., Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013. 154(6): p. 1380-9.
44. Jinek, M., et al., A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 2012. 337(6096): p. 816.
45. Gilbert, L.A., et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013. 154(2): p. 442-51.
46. Chavez, A., et al., Comparison of Cas9 activators in multiple species. Nat Methods, 2016. 13(7): p. 563-567.
47. Konermann, S., et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015. 517(7536): p. 583-8.
48. Zetsche, B., et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015. 163(3): p. 759-771.
49. Kleinstiver, B.P., et al., Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol, 2016. 34(8): p. 869-74.
50. Singh, D., et al., Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Proc Natl Acad Sci U S A, 2018. 115(21): p. 5444-5449.
51. Zhang, X., et al., Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems. Protein & cell, 2018. 9(4): p. 380-383.
52. Liu, Y., et al., Engineering cell signaling using tunable CRISPR–Cpf1-based transcription factors. Nature communications, 2017. 8(1): p. 1-8.
53. Tak, Y.E., et al., Inducible and multiplex gene regulation using CRISPR–Cpf1-based transcription factors. Nature methods, 2017. 14(12): p. 1163-1166.
54. Nihongaki, Y., et al., A split CRISPR-Cpf1 platform for inducible genome editing and gene activation. Nature Chemical Biology, 2019. 15(9): p. 882-+.
55. Rinn, J.L. and H.Y. Chang, Genome regulation by long noncoding RNAs. Annual review of biochemistry, 2012. 81: p. 145-166.
56. Fatica, A. and I. Bozzoni, Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet, 2014. 15(1): p. 7-21.
57. Jandura, A. and H.M. Krause, The New RNA World: Growing Evidence for Long Noncoding RNA Functionality. Trends Genet, 2017. 33(10): p. 665-676.
58. Batista, P.J. and H.Y. Chang, Long noncoding RNAs: cellular address codes in development and disease. Cell, 2013. 152(6): p. 1298-307.
59. Sun, X., et al., The developmental transcriptome sequencing of bovine skeletal muscle reveals a long noncoding RNA, lncMD, promotes muscle differentiation by sponging miR-125b. Biochim Biophys Acta, 2016. 1863(11): p. 2835-2845.
60. Huang, Y., et al., Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Scientific reports, 2016. 6: p. 28897.
61. Zhang, L., et al., Sox4 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cell via activation of long noncoding RNA DANCR. Journal of molecular histology, 2015. 46(6): p. 467-473.
62. Li, Z., et al., Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Mol Cell Biochem, 2017. 433(1-2): p. 51-60.
63. Szpalski, C., et al., Cranial bone defects: current and future strategies. Neurosurg Focus, 2010. 29(6): p. E8.
64. Scotti, C., et al., Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proceedings of the National Academy of Sciences, 2010. 107(16): p. 7251-7256.
65. Lin, C.-Y., et al., The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair. Biomaterials, 2013. 34(37): p. 9401-9412.
66. Dang, P.N., et al., Endochondral Ossification in Critical‐Sized Bone Defects via Readily Implantable Scaffold‐Free Stem Cell Constructs. Stem Cells Translational Medicine, 2017. 6(7): p. 1644-1659.
67. Dennis, S.C., et al., Endochondral Ossification for Enhancing Bone Regeneration: Converging Native Extracellular Matrix Biomaterials and Developmental Engineering In Vivo. Tissue Engineering Part B: Reviews, 2014. 21(3): p. 247-266.
68. Zhang, L., et al., Long noncoding RNA DANCR is a positive regulator of proliferation and chondrogenic differentiation in human synovium-derived stem cells. DNA and cell biology, 2017. 36(2): p. 136-142.
69. Zhang, J., Z. Tao, and Y. Wang, Long non‑coding RNA DANCR regulates the proliferation and osteogenic differentiation of human bone-derived marrow mesenchymal stem cells via the p38 MAPK pathway. International journal of molecular medicine, 2018. 41(1): p. 213-219.
70. Zhang, L., et al., Long noncoding RNA DANCR regulates miR-1305-Smad 4 axis to promote chondrogenic differentiation of human synovium-derived mesenchymal stem cells. Bioscience Reports, 2017. 37(4): p. BSR20170347.
71. Cao, B. and X. Dai, Platelet lysate induces chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells by regulating the lncRNA H19/miR-29b-3p/SOX9 axis. FEBS Open Bio, 2020. 10(12): p. 2656-2665.
72. Liang, W.-C., et al., H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Scientific reports, 2016. 6: p. 20121.
73. Li, G., et al., Long non-coding RNA-H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA-149/SDF-1 axis. J Cell Mol Med, 2020. 24(9): p. 4944-4955.
74. Liao, J., et al., lncRNA H19 mediates BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling. Oncotarget, 2017. 8(32): p. 53581.
75. Huang, Y., et al., Long Noncoding RNA H 19 Promotes Osteoblast Differentiation Via TGF‐β1/S mad3/HDAC Signaling Pathway by Deriving mi R‐675. Stem cells, 2015. 33(12): p. 3481-3492.
76. Huang, Y., et al., Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Scientific reports, 2016. 6(1): p. 1-13.
77. Li, Y. and N. Peng, Endogenous CRISPR-Cas System-Based Genome Editing and Antimicrobials: Review and Prospects. Front Microbiol, 2019. 10: p. 2471.
78. Morlando, M., M. Ballarino, and A. Fatica, Long Non-Coding RNAs: New Players in Hematopoiesis and Leukemia. Front Med (Lausanne), 2015. 2: p. 23.
79. Hsu, M.N., et al., CRISPR interference-mediated noggin knockdown promotes BMP2-induced osteogenesis and calvarial bone healing. Biomaterials, 2020. 252: p. 120094.
80. Nihongaki, Y., et al., A split CRISPR–Cpf1 platform for inducible genome editing and gene activation. Nature chemical biology, 2019. 15(9): p. 882-888.
81. Li, K.-C., et al., Healing of osteoporotic bone defects by baculovirus-engineered bone marrow-derived MSCs expressing MicroRNA sponges. Biomaterials, 2016. 74: p. 155-166.
82. Yuan, S.x., et al., Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1. Hepatology, 2016. 63(2): p. 499-511.
83. Furumatsu, T., et al., Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. Journal of Biological Chemistry, 2005. 280(9): p. 8343-8350.
84. Wang, L., et al., Long Noncoding RNA (lncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. International journal of molecular sciences, 2019. 20(22): p. 5758.
85. Wong, N. and X. Wang, miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic acids research, 2015. 43(D1): p. D146-D152.
86. Betel, D., et al., The microRNA. org resource: targets and expression. Nucleic acids research, 2008. 36(suppl_1): p. D149-D153.
87. Chavez, A., et al., Highly efficient Cas9-mediated transcriptional programming. Nat Meth, 2015. 12(4): p. 326-328.
88. Savell, K.E., et al., A neuron-optimized CRISPR/dCas9 activation system for robust and specific gene regulation. eNeuro, 2019. 6(1).
89. Chen, S., et al., The lncRNA HULC functions as an oncogene by targeting ATG7 and ITGB1 in epithelial ovarian carcinoma. Cell Death & Disease, 2017. 8.
90. Lennox, K.A. and M.A. Behlke, Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Research, 2016. 44(2): p. 863-877.
91. Seiler, J., et al., The lncRNA VELUCT strongly regulates viability of lung cancer cells despite its extremely low abundance. Nucleic Acids Research, 2017. 45(9): p. 5458-5469.
92. Smola, M.J., et al., SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(37): p. 10322-10327.
93. Novikova, I.V., S.P. Hennelly, and K.Y. Sanbonmatsu, Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Research, 2012. 40(11): p. 5034-5051.
94. Somarowthu, S., et al., HOTAIR Forms an Intricate and Modular Secondary Structure. Molecular Cell, 2015. 58(2): p. 353-361.
95. Wang, K.C. and H.Y. Chang, Molecular mechanisms of long noncoding RNAs. Molecular cell, 2011. 43(6): p. 904-914.
96. Li, Y.P., et al., The role of miRNAs in cartilage homeostasis. Curr. Genomics, 2015. 16(6): p. 393-404.
97. de Kroon, L.M., et al., SMAD3 and SMAD4 have a more dominant role than SMAD2 in TGFbeta-induced chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Sci Rep, 2017. 7: p. 43164.
98. An, Y., et al., Down-regulation of microRNA-203a suppresses IL-1β-induced inflammation and cartilage degradation in human chondrocytes through Smad3 signaling. Biosci. Rep., 2020. 40(3): p. BSR20192723.
99. Zhang, J., Z. Tao, and Y. Wang, Long non‑coding RNA DANCR regulates the proliferation and osteogenic differentiation of human bone-derived marrow mesenchymal stem cells via the p38 MAPK pathway. Int J Mol Med, 2018. 41(1): p. 213-219.
100. Li, G., et al., Long noncoding RNA plays a key role in metastasis and prognosis of hepatocellular carcinoma. Biomed Res Int, 2014. 2014: p. 780521.
101. Wang, X., et al., miR-214 targets ATF4 to inhibit bone formation. Nat. Med., 2013. 19(1): p. 93-100.
102. Shi, K., et al., MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone, 2013. 55(2): p. 487-494.
103. Kim, K.M. and S.K. Lim, Role of miRNAs in bone and their potential as therapeutic targets. Curr. Opin. Pharmacol., 2014. 16: p. 133-141.
104. Roberto, V.P., et al., Evidences for a new role of miR-214 in chondrogenesis. Sci. Rep., 2018. 8: p. 3704.
105. Shu, T., et al., Long noncoding RNA UCA1 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells via miRNA-145-5p/SMAD5 and miRNA-124-3p/SMAD4 axis. Biochem. Biophy. Res. Commun., 2019. 514(1): p. 316-322.
106. Zhu, J., et al., lncRNAs: function and mechanism in cartilage development, degeneration, and regeneration. Stem Cell Res. Ther., 2019. 10(1): p. 344.
107. McCarty, N.S., et al., Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun, 2020. 11(1): p. 1281.
108. Chen, C.G., et al., Chondrocyte-intrinsic Smad3 represses Runx2-inducible matrix metalloproteinase 13 expression to maintain articular cartilage and prevent osteoarthritis. Arthrit. Rheum, 2012. 64(10): p. 3278-3289.
109. Schoger, E., et al., Generation of homozygous CRISPRa human induced pluripotent stem cell (hiPSC) lines for sustained endogenous gene activation. Stem Cell Res, 2020. 48: p. 101944.
110. Tian, L., et al., Inhibition of miR-203 Ameliorates Osteoarthritis Cartilage Degradation in the Postmenopausal Rat Model: Involvement of Estrogen Receptor alpha. Hum Gene Ther Clin Dev, 2019. 30(4): p. 160-168.
111. Ding, Y., et al., TALEN-mediated Nanog disruption results in less invasiveness, more chemosensitivity and reversal of EMT in Hela cells. Oncotarget, 2014. 5(18): p. 8393-401.
112. Honda, A., et al., Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9. Exp Anim, 2015. 64(1): p. 31-7.
113. Guo, X.R., et al., ANGPTL8/betatrophin alleviates insulin resistance via the Akt-GSK3β or Akt-FoxO1 pathway in HepG2 cells. Experimental cell research, 2016. 345(2): p. 158-167.
114. Li, H.L., et al., Efficient genomic correction methods in human iPS cells using CRISPR–Cas9 system. Methods, 2016. 101: p. 27-35.
115. Li, H.L., et al., Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports, 2015. 4(1): p. 143-154.
116. Meca-Cortes, O., et al., CRISPR/Cas9-Mediated Knockin Application in Cell Therapy: A Non-viral Procedure for Bystander Treatment of Glioma in Mice. Mol Ther Nucleic Acids, 2017. 8: p. 395-403.
117. Chen, C.Y., et al., Biosafety assessment of human mesenchymal stem cells engineered by hybrid baculovirus vectors. Mol Pharm, 2011. 8(5): p. 1505-14.
118. Sung, L.-Y., et al., Efficient gene delivery into cell lines and stem cells using baculovirus. Nature protocols, 2014. 9(8): p. 1882-1899.
119. Chen, J.L., et al., Extracellular matrix production in vitro in cartilage tissue engineering. J Transl Med, 2014. 12: p. 88.
120. Li, K.C. and Y.C. Hu, Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy. Adv Healthc Mater, 2015. 4(7): p. 948-68.
121. Santo, V.E., et al., Controlled release strategies for bone, cartilage, and osteochondral engineering-part I: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev, 2013. 19(4): p. 308-326.
122. Maeder, M.L., et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods, 2013. 10(10): p. 977-9.
123. Cheng, A.W., et al., Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res, 2013. 23(10): p. 1163-71.
124. Cho, S.W., et al., Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome research, 2014. 24(1): p. 132-141.
125. Fu, Y., et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013. 31(9): p. 822-6.
126. Zalatan, J.G., et al., Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 2015. 160(1-2): p. 339-350.
127. Nihongaki, Y., et al., A split CRISPR-Cpf1 platform for inducible genome editing and gene activation. Nat Chem Biol, 2019. 15(9): p. 882-888.
128. Zetsche, B., S.E. Volz, and F. Zhang, A split-Cas9 architecture for inducible genome editing and transcription modulation. Nature biotechnology, 2015. 33(2): p. 139-142.
129. Yu, Y., et al., Engineering a far-red light-activated split-Cas9 system for remote-controlled genome editing of internal organs and tumors. Sci Adv, 2020. 6(28): p. eabb1777.
130. Nihongaki, Y., et al., Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol, 2015. 33(7): p. 755-60.
131. Ermak, G., V.J. Cancasci, and K.J. Davies, Cytotoxic effect of doxycycline and its implications for tet-on gene expression systems. Anal Biochem, 2003. 318(1): p. 152-4.
132. Niethammer, D. and R.C. Jackson, The effect of trimethoprim on cellular transport of methotrexate and its cytotoxicity to human lymphoblastoid cells in vitro. Br J Haematol, 1976. 32(2): p. 273-81.
133. Laplante, M. and D.M. Sabatini, mTOR signaling in growth control and disease. Cell, 2012. 149(2): p. 274-93.
134. Tak, Y.E., et al., Inducible and multiplex gene regulation using CRISPR–Cpf1-based transcription factors. Nature methods, 2017. 14(12): p. 1163.
135. Kleinstiver, B.P., et al., Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol, 2019. 37(3): p. 276-282.
136. Zetsche, B., et al., Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nature biotechnology, 2017. 35(1): p. 31.
137. Magnusson, J.P., et al., Enhanced Cas12a multi-gene regulation using a CRISPR array separator. bioRxiv, 2021.
138. Gilbert, L.A., et al., Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell, 2014. 159(3): p. 647-61.
139. Ciurkot, K., et al., Efficient multiplexed gene regulation in Saccharomyces cerevisiae using dCas12a. Nucleic acids research, 2021. 49(13): p. 7775-7790.
140. Truong, V.A., et al., CRISPRai for simultaneous gene activation and inhibition to promote stem cell chondrogenesis and calvarial bone regeneration. Nucleic Acids Res, 2019. 47(13): p. e74.
141. Gehron Robey, P., Chapter 17 - Noncollagenous Bone Matrix Proteins A2 - Bilezikian, John P, in Principles of Bone Biology (Third Edition), L.G. Raisz and T.J. Martin, Editors. 2008, Academic Press: San Diego. p. 335-349.