簡易檢索 / 詳目顯示

研究生: 湯宗霖
Tsung-Lin Tang
論文名稱: 利用靜磁力與勞侖茲力驅動雙軸循序掃描面鏡
Dual-axis Raster Scanning Mirror Driven Using Magneto-static Force and Lorentz Force
指導教授: 方維倫
Weileun Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 97
中文關鍵詞: 靜磁力勞侖茲力感應電流掃描面鏡
外文關鍵詞: Magnetostatic force, Lorentz force, Eddy current, Scanning mirror
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用微機電技術設計與製造一種新式的微型掃描面鏡,該元件主要整合靜磁力與勞侖茲力,以超距力的方式來驅動元件,鏡面結構上不需要任何複雜的電流繞線與絕緣層,並可達到循序掃描的規格。本文針對致動的設計進行理論推導與分析,除了比較不同驅動機制的差異,並與元件實驗量測的部分,相互印證。除了成功的致動元件之外,本論文也探討應用於投影顯示時的一些元件特性,其中包括操作環境對鏡面扭轉共振頻的影響、驅動訊號波形對元件的影響與掃描起始點的控制問題。此外,本論文進一步利用所製作出來的雙軸掃描面鏡進行一簡單的文字投影,驗證其應用於投影顯示之可行性。


    This thesis reports novel coil-less micro scanning mirrors driven by the magnetostatic force resulted from magnetic interaction as well as the Lorentz force induced by eddy current. This design eliminates complicated coil routing and insulation layer deposition, and simplifies fabrication allowing easy integration with micromachining and CMOS processes. Bulk micromachined 1-axis and 2-axis scanning mirrors are demonstrated, displaying 1D and 2D scanning patterns. The 2D scanning patterns are easily tuned by varying the combination of driving frequencies. The results show that the diamagnetic (Cu) mirror is mainly driven by the eddy current induced Lorentz force, while the ferromagnetic (Ni) mirror is mainly driven by the magnetostatic force.

    目錄 I 圖目錄 IV 表目錄 VIII 第1章 序論 1 1-1 前言 1 1-2 文獻回顧 4 1-3 研究動機 11 第2章 元件設計與理論分析 21 2-1 結構設計 21 2-2 理論分析 22 2-2.1 靜磁力理論分析 22 2-2.2 勞侖茲力理論分析 23 2-2.3 磁場分佈分析 25 2-2.4 單軸掃描面鏡理論分析 26 2-2.5 雙軸掃描面鏡理論分析 29 2-2.6 掃描圖形分析 31 2-3 結構模態分析 32 2-4 驅動機制分析 33 第3章 製程與實驗 45 3-1 鎳結構製作流程 45 3-2 銅結構製作流程 46 3-3 製程結果 47 3-4 系統整合模組 48 第4章 元件量測 55 4-1 靜態量測 55 4-2 驅動實驗裝置 56 4-3 動態量測 57 4-3.1 頻率響應 57 4-3.2 模擬、理論計算與實際量測之比較 58 4-3.3 驅動功率與光學掃描角之關係 59 4-3.4 掃描圖形 60 4-3.5 磁場方向對扭轉共振頻之影響 61 4-3.6 溫度對掃描共振頻之影響 62 4-3.7 驅動訊號對元件動態行為之影響 63 4-3.8 掃描起始點 64 4-3.9 雷射訊號編碼 65 4-3.10 可靠度測試 66 第5章 結論 84 5-1 研究成果 84 5-2 未來工作 85 第6章 參考文獻 87 論文著作 96

    [1] K. E. Petersen, “Silicon torsional scanning mirror,” IBM J. Res., vol. 24, pp. 631-637, 1980
    [2] L.-S. Fan, Y.-C. Tai, and R. S. Muller, “IC-processed electrostatic micromotors,” 1988 IEEE Int. Electron Devices Meeting, San Francisco, CA, Dec 1988, pp. 666–669.
    [3] W. C. Tang, T.-C. H. Nguyen, and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sensors and Actuators A (Physical), vol. 20, pp. 25-32, 1989.
    [4] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Micro-machined threedimensional micro-optics for integrated free-space optical system,” IEEE Photonics Technology Letters, vol. 6, no. 12, pp. 1445-1447, December 1994.
    [5] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Realization of novel monlithic free-space optical disk pickup heads by surface micromachining,” Optical Letters, vol. 21, pp. 155-157, 1996.
    [6] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Surface-,Micromachined Micro-XYZ Stages for Free-Space Microoptical Bench,” IEEE Photonics Technology Letters, vol. 9, pp. 345-347, 1997.
    [7] K. S. J. Pister, “Hinged polysilicon structures with integrated CMOS TFT’s,” Technical Digest of the 1992 Solid State Sensor and Actuator Workshop, 1992, Hilton Head Island, SC, pp. 136-139.
    [8] L. Fan, and M. C. Wu, “Self-assembled micro-XYZ stages for optical scanning and alignment,” the 10th Annual Meeting of the IEEE Lasers and Electro-Optics Society, San Francisco, CA, 1997, pp. 266-267.
    [9] L. Fan and M. C. Wu, “Two-dimensional optical scanner with large angular rotation realized by self-assembled micro-elevator,” Digest of 1998 IEEE/LEOS Summer Topical Meeting, Monterey, CA, July 1998, pp. II/107-108.
    [10] M.-H. Kiang, O. Solgaard, and K.-Y. Lau, “Electrostatic Combdrive-Actuated Micromirrors for Laser-Beam Scanning and Positioning,” Journal of Microelectromechanical Systems, vol. 7, no. 1, pp. 27-37, 1998.
    [11] M.-H. Kiang, O. Solgaard, R. S. Muller, and K.-Y. Lau, “Micromachined polysilicon microscanners for barcode readers,” IEEE Photonics Technology Letters, vol. 8, pp. 95-97, 1998.
    [12] V. A. Aksyuk, F. Pardo, C. A. Bolle, C. R. Giles, and D. J. Bishop, “Lucent MicrostarTM micromirror array technology for large optical crossconnects,” Proceedings of SPIE, Santa Clara, CA, September 2000, vol. 4178, pp. 320-324.
    [13] V.A. Aksyuk, F. Pardo, and D.J. Bishop, “Stress-induced curvature engineering in surface-micromachined devices,” Proceedings of the SPIE, vol. 3680, 1999, pp. 984-993.
    [14] V. A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H. B. Chan, M. E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, Ronald Ryf, David T. Neilson, J. Kim, C. Randy Giles, D. Bishop, “Beam-Steering Micromirrors for Large Optical Cross-Connects,” Journal of Lightwave Technology, vol. 21, pp. 634-642, 2003
    [15] L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “On the Expandability of Free-Space Micromachined Optical Cross Connects,” Journal of Lightwave Technology, vol. 18, pp. 482-489, 2000.
    [16] R. Conant, J. Nee, K. Lau, R. Muller, “Dynamic Deformation of Scanning Micromirrors,” 2000 IEEE/LEOS Inernational Conference on Optical MEMS, Kauai, Hawaii, August 2000, pp. 49-50.
    [17] M. Hart, R.A. Conant, K.-Y. Lau, and R.S. Muller, “Stroboscopic Interferometer System for Dynamic MEMS Characterization,” Journal of Microelectromechanical Systems, vol. 9, pp. 409-418, 2000.
    [18] P. B. Chu, S.-S. Lee, S. Park, M. J. Tsai, I. Brener, D. Peale, R. A. Doran, C. Pu, “MOEMS-enabling technologies for large optical cross-connects,” Proceedings of the SPIE, vol. 4561, pp. 55-65, 2001.
    [19] V. Milanović, “Multilevel-Beam SOI-MEMS Fabrication and Applications,” Journal of Microelectromechanical Systems, vol. 13, no. 1, pp. 19-30, 2004.
    [20] V. Milanović, M. Last, and K.S.J. Pister, “Torsional micromirrors with lateral actuators,” Transducers ’01, Munich, Germany, June 2001, pp.1298-1301.
    [21] T. J. Brosnihan, S. A. Brown, A. Brogan, C. S. Gormley, D. J. Collins, S. J. Sherman, M. Lemkin, N. A. Polce, and M. S. Davis, “Optical IMEMS® – A Fabrication Process for MEMS Optical Switches with Integrated On-Chip Electronics,” Transducers’03, Boston, MA, June 2003, pp.1638-1642.
    [22] M. Wu and W. Fang, “Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes,” Journal of Micromechanics and Microengineering, vol. 15, no. 3, pp.535-542, 2005.
    [23] M. Wu and W. Fang, “A molded surface-micromachining and bulk etching release (MOSBE) fabrication platform on (1 1 1) Si for MOEMS,” Journal of Micromechanics and Microengineering, vol. 16, no. 2, pp.260-265, 2006.
    [24] M. Wu, H. Y. Lin and W. Fang,” A Poly-Si-Based Vertical Comb-Drive Two-Axis Gimbaled Scanner for Optical Applications,” IEEE Photonics Technology Letters, vol. 18, no. 20, pp. 2111-2113, October 2006.
    [25] N. Asada, H. Matsuki, K. Minami and M. Essashi, “Silicon micromachined two-dimensional alvano optical scanner, ” IEEE Transactions on Magnetics, vol. 30, pp. 4647–4649, 1994.
    [26] L.O.S. Ferreira and S. Moehlecke, “A silicon micromechanical galvanometric scanner,” Sensors and Actuators A, vol. 73, pp. 252–260, 1999.
    [27] S. H. Ahn and Y. K. Kim, “Silicon scanning mirror of two DOF with compensation current routing”, Journal of Micromechanics and Microengineering, vol. 14, pp. 1455–1461, 2004.
    [28] H. A. Yang and W. Fang, “A Novel Coil-less Lorentz Force 2D Scanning Mirror Using Eddy Current,” IEEE MEMS International Conference, Istanbul, Turkey, Jan 2006, pp.774-777.
    [29] J.W. Judy, “Magnetic microactuators with polysilicon flexures,” Masters Thesis, Department of EECS, University of California, Berkeley, 1994.
    [30] J.W. Judy, and R.S. Muller, “Magnetic Microactuation Of TorsionalPolysilicon Structures,” International Conference on Solid-State Sensors and Actuators, 1, June, 1995, pp. 332-335.
    [31] J.W. Judy, R.S. Muller, and H.H. Zappe, “Magnetic microactuation of polysilicon flexure structures,” Journal of Microelectromechanical Systems, 4, pp. 162-169, 1995.
    [32] 楊學安, ”電磁感應渦電流於微機電系統之分析與應用,” 國立清華大學博士論文, 2005.
    [33] B. Lochel, A. Maciossek, M. Rothe, and W. Windbracke, “Micro Coils Fabricated By UV Depth Lithography And Galvanoplating,” The 8th international conference on solid-state sensors and actuators, Stockholm, Sweden, June 1995, pp. 264-267.
    [34] B. Ghodsian, A. Parameswaran, M. Syrzycki, and N. Tait, “Fabrication of affordable metallic microstructures by electroplating and photoresist molds,” Canadian Conference on Electrical and Computer Engineering, Alberta, Canada, May, 1996, 1, pp. 68-71.
    [35] K. Akimoto, Y. Uenishi, K. Honma, and S. Nagaoka, “Evaluation of comb-drive nickel micromirror for fiber optical communication,” IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya, Japan, Jan., 1997, pp. 66-71.
    [36] A.S. Holmes, and K.W. Lee, “Multilayer electroformed devices on silicon substrates,” IEE Seminar on Demonstrated Micromachining Technologies for Industry, Birmingham, AL, March, 2000, pp. 5/1-5/4.
    [37] K. Kataoka, T. Itoh, T. Suga, and K. Inoue, “Contact properties of Ni micro-springs for MEMS probe card,” Electrical Contacts, 2004. pp. 231-235.
    [38] W. Qu, C. Wenzel, and K. Drescher, “Fabrication of low-cost capacitive accelerometers by 3D microforming,” Optoelectronic and Microelectronic Materials And Devices Proceedings, Dec., 1996, pp. 462-465.
    [39] W. Qu, “3D UV-microforming: principles and applications,” Engineering Science and Education Journal, 8, pp. 13-19, 1999.
    [40] Y. Konaka, and M.G. Allen, “Single- and multi-layer electroplated microaccelerometers,” IEEE, The Ninth Annual International Workshop on Micro Electro Mechanical Systems, Feb., 1996, pp. 168-173.
    [41] T. Iizuka, T. Oba, and H. Fujita, “Electrostatic micro actuators with high-aspect-ratio driving gap for hard disk drive application,” Proceedings of International Symposium on Micromechatronics and Human Science, Oct., 2000, pp. 229-236.
    [42] K. Shingo, K. Kataoka, T. Itoh, and T. Suga, “Design and fabrication of an electrostatically actuated MEMS probe card,” TRANSDUCERS 2003, 2, June, 2003, pp. 1522-1525.
    [43] Z. Li, and N.C. Tien, “Low-Cost Electroplated Vertical Comb-Drive,” Proceedings of the Solid-State Sensor, Actuator, and Microsystems Workshop, Hilton Head, SC, 2004, pp. 220-223.
    [44] J.-B. Yoon, C.-H. Han, E. Yoon, and C.-K. Kim, “Monolithic Integration of 3-D Electroplated Microstructures of Unlimited Number of Levels Using Planarization with a Sacrificial Metallic Mold (PSMM),” IEEE International Conference on Micro Electro Mechanical Systems, Jan., 1999, pp. 624-629.
    [45] A. Cohen, G. Zhang, F.-G. Tseng, U. Frodis, F. Mansfeld, and P. Will, “EFAB: rapid, low-cost desktop micromachining of high aspect ratio true 3-D MEMS,” IEEE International Conference on Micro Electro Mechanical Systems, Jan., 1999, pp. 244-251.
    [46] http://www.microfabrica.com/
    [47] P.M. Hagelin, O. Solgaard,“ Optical raster-scanning displays based onsurface-micromachined polysilicon mirrors,” IEEE J. Sel. Top.Quantum Electron. , 5, pp67–74, 1999
    [48] R.J. Roark, “Formulas for Stress and Strain,” 4th Ed., McGraw-Hill, New York, 1965.
    [49] http://www.mclink.it/personal/MC2113/maths/lissa2D.html
    [50] http://www.thefreedictionary.com/
    [51] http://www.artwork.com/gdsii/gds_rip/orientation.htm
    [52] http://en.wikipedia.org/wiki/Main_Page

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE