簡易檢索 / 詳目顯示

研究生: 周妙珍
Jhou, Miao Jhen
論文名稱: 果蠅橢圓體單一神經元之分類
Classification of EB single neurons in Drosophila
指導教授: 江安世
Chiang, Ann Shyn
口試委員: 楊嘉鈴
吳嘉霖
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 35
中文關鍵詞: 橢圓體單神經元果蠅
外文關鍵詞: EB single neurons, Drosophila
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 果蠅的中央複合體被認為跟飛行調控、多重資訊處理、運動行為調控、交配行為、
    是視覺模式記憶、嗅覺記憶、空間方位導向、及空間方向記憶有關。橢圓體屬於
    中央複合體的一部份,且與方位調控有關,同時被認為是一學習與記憶之中心。
    先前研究結果顯示橢圓體與多樣視覺行為有關,但就單一神經元層次,橢圓體的
    探究仍不多。自從橢圓體被認為是果蠅腦中的一整合中心,因此橢圓體的架構、
    型態及神經類別,必須更進一步在單一神經元層次被分析。結果顯示,其包含了
    先前未被分類出的單一神經元類別,例如:小區域神經元中、神經進入其他中央
    複合體或輔助區的分岔數幾乎不會大於三次,但我們在小區域神經元中發現一單
    一神經元分岔四次,進入四個不同的子結構中。橢圓體單一神經元不只在中央複
    合體中的子結構中連結,也連接到附屬區域,包含:側三角區(LTRs, lateral
    triangles )、下緣背側前端原腦( IDFP, inferior dorsofrontal
    protocerebra);另外,橢圓體與原腦橋(PB, protocerebral bridge)和下緣
    背側前端原腦之間形成迴路。在大區域神經元中,我們也定義了一些先前未被正
    式辨認的單一神經類型。這些建立在單一神經元上的分析,可以提供更多橢圓體
    與其他中央複合體子結構,或其與兩輔助區之間的更詳細路徑或形態分類。


    The central complex in the Drosophila has been implicated in flight control (Ilius et
    al., 1994), multimodal information processing (Muller et al., 1997), the coordination
    of motor behavior (Strauss and Heisenberg, 1993; Martin et al., 1999; Strauss, 2002;
    Poeck et al., 2008), courtship behavior (Popov et al., 2003, 2004), visual pattern
    memory (Liu et al., 2006; Pan et al., 2009), olfactory memory (Wu et al., 2007),
    spatial orientation (Heinze and Homberg, 2007), and spatial orientation memory
    (Neuser et al., 2008). As part of central complex, the ellipsoid body also plays a
    critical key role in locomotion control and is regarded as one of the learning and
    memory centers. Although the neural architecture of the central complex has been
    reported upon in various studies, little is known about the EB at the level of a single
    neuron. Since the EB is one of the integrative centers in the Drosophila brain, the
    architectures, morphology and neuron types in the EB must be analyzed at the single
    neuron level. It includes neurons of types that have not been identified before. For
    example, each small-field neuron has four branching regions, whereas the others have
    no more than three branching regions. EB single neurons not only connect within the
    substructures of the central complex but also project to the accessory region, which
    includes lateral triangles (LTRs) and inferior dorsofrontal protocerebra (IDFP); they
    also form a loop among the PB, IDFP, and EB. While in large-field neurons, we also
    defined some types of neurons that have not been destinquished formally before. This
    study provides a further investigation in relationships between substructures within
    the central complex or the accessory regions, and more details about architectures and
    neurons types in the EB at single neuron level.

    Contents .摘要-----------------------1 .Abstract-------------------2 1. Introductions-------------3 2. Materials and methods-----8 3. Results-------------------11 4. Discussions---------------17 5. References----------------21 6. Figures-------------------24

    Breidbach, O., R. Dennis, J. Marx, C. Gorlach, H. Wiegandt and R. Wegerhoff (1992).
    Insect glial cells show differential expression of a glycolipid-derived, glucuronic
    acid-containing epitope throughout neurogenesis: detection during postembryogenesis
    and regeneration in the central nervous system of Tenebrio molitor L. Neurosci Lett
    147(1): 5-8.
    Chen, C. K., W. Y. Chen and C. T. Chien (2012). "The POU-domain protein Pdm3
    regulates axonal targeting of R neurons in the Drosophila ellipsoid body. Dev
    Neurobiol 72(11): 1422-1432.
    Hanesch, U., Fischbach, K.-F., and Heisenberg, M. (1989). Neuronal architecture of
    the central complex in Drosophila melanogaster. Cell Tissue Res. 257, 343–366.
    Heinze, S. and U. Homberg (2007). Maplike representation of celestial E-vector
    orientations in the brain of an insect. Science 315(5814): 995-997.
    Homberg U (1985) Interneurons of the central complex in the bee brain (Apis
    mellifica L.). J Insect Physiol 31:251-264
    Ilius, M., R. Wolf and M. Heisenberg (1994). "The central complex of Drosophila
    melanogaster is involved in flight control: studies on mutants and mosaics of the gene
    ellipsoid body open. J Neurogenet 9(3): 189-206.
    Lin, C. Y., C. C. Chuang, T. E. Hua, C. C. Chen, B. J. Dickson, R. J. Greenspan and A.
    S. Chiang (2013). A comprehensive wiring diagram of the protocerebral bridge for
    visual information processing in the Drosophila brain. Cell Rep 3(5): 1739-1753.
    Liu, G., H. Seiler, A. Wen, T. Zars, K. Ito, R. Wolf, M. Heisenberg and L. Liu (2006).
    Distinct memory traces for two visual features in the Drosophila brain. Nature
    439(7076): 551-556.
    Lundquist, C. T., F. L. Clottens, G. M. Holman, J. P. Riehm, W. Bonkale and D. R.
    Nassel (1994). Locustatachykinin immunoreactivity in the blowfly central nervous
    system and intestine. J Comp Neurol 341(2): 225-240.
    Martin, D., S. Zusman, X. Li, E. L. Williams, N. Khare, S. DaRocha, R.
    Chiquet-Ehrismann and S. Baumgartner (1999). wing blister, a new Drosophila
    laminin alpha chain required for cell adhesion and migration during embryonic and
    imaginal development. J Cell Biol 145(1): 191-201.
    Mizunami, M. (1995). Morphology of higher-order ocellar interneurons in the
    cockroach brain. J Comp Neurol 362(2): 293-304.
    Mizunami, M. (1995). Neural organization of ocellar pathways in the cockroach brain.
    J Comp Neurol 352(3): 458-468.
    Mizunami, M. (1995). Functional diversity of neural organization in insect ocellar
    systems. Vision Res 35(4): 443-452.
    Muller, M., U. Homberg and A. Kuhn (1997). Neuroarchitecture of the lower division
    of the central body in the brain of the locust (Schistocerca gregaria). Cell Tissue Res
    288(1): 159-176.
    Muller, U. (1997). Insect 86 kDa protein kinase C substrate is a filament interacting
    protein regulated by Ca2+/calmodulin and phosphorylation. Brain Res 757(1): 24-30.
    Neuser, K., T. Triphan, M. Mronz, B. Poeck and R. Strauss (2008). Analysis of a
    spatial orientation memory in Drosophila. Nature 453(7199): 1244-1247.
    Pan, Y., Y. Zhou, C. Guo, H. Gong, Z. Gong and L. Liu (2009). Differential roles of
    the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory.
    Learn Mem 16(5): 289-295.
    Poeck, B., T. Triphan, K. Neuser and R. Strauss (2008). Locomotor control by the
    central complex in Drosophila-An analysis of the tay bridge mutant. Dev Neurobiol
    68(8): 1046-1058.
    Popov, A. V., A. I. Peresleni, P. V. Ozerskii, E. E. Shchekanov and E. V.
    Savvateeva-Popova (2004). [The fan-shaped and ellipsoid bodies of the brain central
    complex are involved in the control of courtship behavior and communicative sound
    production in Drosophila melanogaster males]. Ross Fiziol Zh Im I M Sechenova
    90(4): 385-399.
    Popov, A. V., N. A. Sitnik, E. V. Savvateeva-Popova, R. Wolf and M. Heisenberg
    (2003). The role of central parts of the brain in the control of sound production during
    courtship in Drosophila melanogaster. Neurosci Behav Physiol 33(1): 53-65.
    Renn, S. C., J. D. Armstrong, M. Yang, Z. Wang, X. An, K. Kaiser and P. H. Taghert
    (1999). Genetic analysis of the Drosophila ellipsoid body neuropil: organization and
    development of the central complex. J Neurobiol 41(2): 189-207.
    Schildberger, K. (1983). Local interneurons associated with the mushroom bodies and
    the central body in the brain of Acheta domesticus. Cell Tissue Res 230(3): 573-586.
    Schurmann, F. W. and N. Klemm (1984). Serotonin-immunoreactive neurons in the
    brain of the honeybee. J Comp Neurol 225(4): 570-580.
    Strauss, R. (2002). The central complex and the genetic dissection of locomotor
    behaviour. Curr Opin Neurobiol 12(6): 633-638.
    Strauss, R. and M. Heisenberg (1993). A higher control center of locomotor behavior
    in the Drosophila brain. J Neurosci 13(5): 1852-1861.
    Wegerhoff, R., O. Breidbach and M. Lobemeier (1996). Development of
    locustatachykinin immunopositive neurons in the central complex of the beetle
    Tenebrio molitor. J Comp Neurol 375(1): 157-166.
    Whitcomb, R. F. and D. L. Williamson (1975). Helical wall-free prokaryotes in
    insects: multiplication and pathogenicity. Ann N Y Acad Sci 266: 260-275.
    Wu, C. L., S. Xia, T. F. Fu, H. Wang, Y. H. Chen, D. Leong, A. S. Chiang and T. Tully
    (2007). Specific requirement of NMDA receptors for long-term memory consolidation
    in Drosophila ellipsoid body. Nat Neurosci 10(12): 1578-1586.
    Zhang, Z., X. Li, J. Guo, Y. Li and A. Guo (2013). Two clusters of GABAergic
    ellipsoid body neurons modulate olfactory labile memory in Drosophila. J Neurosci
    33(12): 5175-5181.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE