簡易檢索 / 詳目顯示

研究生: 蘇聖欽
Su, Sheng-Chin
論文名稱: 光學驅動薄膜式奈米碳管致動器
Light-Driven Actuators Using Carbon Nanotube Films
指導教授: 洪健中
Hong, Chien-Chong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 84
中文關鍵詞: 奈米碳管低溫噴灑製程光學致動器微結構懸臂樑碳管薄膜
外文關鍵詞: carbon nanotube, spraying process, optical actuator, micro-cantilever beam, nanotube film
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要針對低溫奈米碳管薄膜(carbon nanotube films)沉積技術之開發,以及利用噴灑製程技術將奈米碳管沉積於高分子懸臂樑上,接著我們也實驗證實了採用噴灑沉積出來的懸臂樑在光之激發下,也能產生位移(deflection)作為致動器的應用。因碳管薄膜沉積往往必須在高溫下才能製作,限制了其發展及應用,為了克服這樣的障礙,採用了有別於傳統氣相沉積之噴灑方法,這樣的製程方法除了具有低溫製程的特性外,還具備了低成本設備、易智慧型操控等幾項優點。然而在噴灑沉積之均勻性是本研究之重點之ㄧ,採用幾種溶劑對於碳管分佈、振盪、以及過濾幾種試驗來達到噴灑均勻分佈性,也將低溫之奈米碳管薄膜成長技術,應用在定義圖案的4"晶圓和高分子懸臂樑上;另外以噴灑沉積搭配AZ4620光阻定義圖案製程兩種技術結合下,成功得製作出由奈米碳管組成之微米線,尺寸最小可達27.8 μm。在致動測試方面,首先在4”之COC高分子晶圓上設計一組溫度感測電極,量測CNT/SU-8薄膜在808 nm及405 nm兩種LD(laser diode)下的升溫狀況及進行理論試算;之後以微製程的技術製作出尺寸在1000 μm *100 μm*50 μm之碳管高分子懸臂樑,同樣用兩種LD來驅動1 mm、2.5 mm、5 mm、10 mm不同長度之懸臂樑,針對長度10mm之懸臂樑進行致動試驗,不管使用波長405 nm或808 nm之LD都能夠懸臂樑產生一定程度的位移致動量,但從結果可以得到波長較短405 nm之LD產生的致動位移量明顯長波長808 nm之LD來的大,長度10 mm懸臂樑以405 nm之LD在強度約0.96 mW/mm2驅動下,產生位移量(deflection)更高達約2500 μm,相當於約243 μN之等效力;在實驗中也發現在外在頻率為1 Hz下運作能正常運作,且懸臂樑振動的頻率能與外在給予頻率同步運作,之後我們也試著提升外在施予的頻率,發現在頻率5 Hz以上,奈米碳管高分子複合懸臂樑已開始無法與外在頻率同步運行,且振幅呈現不規則的變動情況。於本論文中以奈米碳管為致動之材料,結合微製程和噴灑技術所開發出光學驅動之微致動器,在未來或許有取代傳統致動方式的潛力。


    This paper has presented a low-temperature carbon nanotube (CNT) film fabrication technology and makes demonstration on optical actuation of polymer cantilever with spray-on carbon nanotube films. In this work, we use spraying deposition technology to realize CNT deposition at low temperature on polymer substrate. It has the advantages of low equipment cost, low-temperature process and ease of integration. The uniform of CNT deposited films is an importance in our research. We use oscillation and filtration to improve the CNT distribution. Experimental results of the developed low-temperature CNT fabrication technology have shown good performance to pattern thin CNT films on 4” wafer and polymer cantilever beam. The deposition micro-line of CNT films can be easily controlled by AZ4620 photo resistance patterned and CNT spraying process. And the size of deposition micro-line is between 27.8 μm and 150 μm. We design a micro-temperature sensor on the 4” COC wafer and deposit CNT/SU-8 films on it, then measuring the relationship of times and temperature under 405 nm and 808 nm LD(laser diode) irradiate, and trying to computing the deflection by the theory. We successfully use MEMS technique to make CNT/SU8 cantilever beam and the size is about 1000 μm *100 μm*50 μm. We use 405 nm and 808 nm LD as light source to actuate four disparity-length cantilever beams(10, 5, 2.5, 1 mm). Both 405 nm and 808nm can actuate the beam, but the deflection successfully is larger than 808 nm LD. For the beam of the 10 mm length can be actuated ~2500 μm under 405nm LD having 0.96 mW/mm2 energy, and the equivalent force is about 243 μN. We also use LD with 1 Hz to test the vibration of the beam. It can work with the external force at the same time. When the frequency is greater than 5 Hz, the beams can not work with the external force at the same time. And the amplitude of vibration becomes irregular. In this study, it uses to develop an optical actuator that needs to take carbon nanotube as actuating material, and to combine the MEMS technique with spraying process. Maybe it will be potential to replace the traditional actuator in the future.

    第一章 緒論 1 1.1. 前言 1 1.2. 研究動機 2 1.3. 光學驅動致動器 2 1.4. 奈米碳管薄膜之發展及應用 4 1.4.1. 電致動與光致動方法 4 1.4.2. 碳管薄膜沉積技術 8 1.5. 研究目的與方法 11 1.6. 論文計畫書架構 13 第二章 奈米碳管薄膜之製程開發 14 2.1. 奈米碳管薄膜與光學致動元件 14 2.2. 噴灑理論 14 2.3. 系統架設 17 2.4. 奈米碳管薄膜噴灑製程與參數探討 23 2.4.1. 碳管溶液 23 2.4.1.1. 溶劑對奈米碳管於溶液分散均勻性測試 23 2.4.1.2. 奈米碳管振盪與過濾 26 2.4.1.3. 大面積碳管噴灑疊加分析 29 2.5. 奈米碳管薄膜噴灑結果 33 2.5.1. 大面積噴灑測試 33 2.5.2. 以光阻定義為圖案噴灑結果 35 2.5.3. 碳管薄膜之微米線 36 2.5.4. 碳管薄膜高分子複合懸臂樑 38 第三章 光學驅動薄膜式奈米碳管致動器 41 3.1. 光學致動碳管薄膜之系統 41 3.1.1. 懸臂樑微結構 41 3.1.2. 光學驅動薄膜系統之設計 41 3.1.3. 光學微致動結構之製程限制 42 3.2. 光學致動機制 43 3.3. 光學微致動結構之製程 44 3.4. 奈米碳管之光學基礎測試 44 3.4.1. 奈米碳管之吸收光譜量測 44 3.4.2. 奈米碳管之光能與熱能間轉換 45 3.5. 紫外光驅動碳管薄膜與高分子複合懸臂樑之致動測試 49 3.5.1. 量測系統之架設 49 3.5.2. 致動測試影像 50 3.5.3. 不同光驅動頻率量測結果 53 3.5.4. 不同碳管薄膜複合樑長度之樑測試結果及等效力轉換 56 3.5.5. 實驗結果比較與分析討論 61 第四章 總結與未來研究建議 63 4.1. 總結 63 4.2. 未來研究建議 64 附錄一 TFSEM和WYKO量測設備之規格 67 附錄二 感測電極原理、製作及校正 68 附錄三 碳管噴灑之閥門控制程式及電子元件 71 附錄四 紅外光驅動碳管薄膜與高分子複合懸臂樑之致動測試 73 附錄五 808 nm LD(laser Diode)規格參數表 76 參考文獻 77 發表著作 83 作者簡介 84

    [1] G. Agarwal, L. A. Sowards, R. R. Naik, and M. O. Stone, “Dip-Pen Nanolithography in Tapping Mode”, Journal American Chemical Society 2003, vol. 125, pp. 580-583.
    [2] O. Ohmichi, Y. Yamagata and T. Higuchi, “Micro Impact Drive Mechanisms Using Optically Excited Thermal Expansion”, Journal of Microelectro- Mechanical Systems 1997, vol. 6, no. 3, pp. 200-207.
    [3] P. Yang, M. Stevenson, Y. Lai, C. Mechefske, M. Kujath and T. Hubbard, “Design, Modeling and Testing of a Unidirectional MEMS Ring Thermal Actuator”, Sensors and Actuators A 2008, vol. 143, pp. 352-359.
    [4] G. H. Haertling, “PLZT Electrooptic Materials and Applications - A Review”, Ferroelectric 1987, vol. 75, pp. 25-55.
    [5] D. Kuckling, A. Richter and K.-F. Arndt, “Temperature and pH-Dependent Swelling Behavior of Poly(N-isopropylacrylamide) Copolymer Hydrogels and Their Use in Flow Control”, Macromolecular Materials and Engineering 2003, vol. 288, pp. 144-151.
    [6] A. Lendlein, H. Jiang, O. Junger, R. Langer, “Light-Induced Shape-Memory Polymers” Nature 2005, vol. 434, pp. 879-882.
    [7] G.. Van der Veen and W. Prins, “Light-Sensitive Polymers”, Physical Science 1971, vol. 230, pp. 70-72.
    [8] Y. Yu, M. Nakano, T. Ikeda, “Directed Bending of a Polymer Film by Light”, Nature 2003, vol. 425, pp. 145.
    [9] S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature 1991, vol. 354 , pp. 56-58.
    [10] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load”, Science 2000, vol. 287, pp. 637-640.
    [11] S. Iijima, Charles Brabec, Amitesh Maiti, and Jerzy Bernholc, “Structural Flexibility of Carbon Nanotubes”, Journal of Chemical Physics 1996, vol. 104, pp. 2089-2092.
    [12] J. W. Mintmire, B. I. Dunlap, and C. T. White, “Are Fullerene Tubules Metallic? ”, Physical Review Letters 1992, vol. 68, pp. 631-634.
    [13] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, et. al., “Crystalline Ropes of Metallic Carbon Nanotubes”, Science 1996, vol. 273, pp. 483-487.
    [14] J. Hone, I. Ellwood, M. Muno, Ari Mizel, Marvin L. Cohen, and A. Zettl, “Thermoelectric Power of Single-Walled Carbon Nanotubes”, Physical Review Letters, vol. 80, pp. 1042-1045, 1998.
    [15] R. H. Baughman, C. Cui, A. A. Zakhidov, Z. lqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski, S. Roth and M. Kertesz, “Carbon Nanotube Actuators”, Science 1999, vol. 284, pp. 1340-1344.
    [16] S. Gupta, M. Hughes, A. H. Windle, and J. Robertson, “Charge Transfer in Carbon Nanotube Actuators Investigated Using in Situ Raman Spectroscopy”, Journal of Applied Physics 2004, vol. 95, pp. 2038-2048.
    [17] G. M. Spinks, G. G. Wallace, L. S. Fifield, L. R. Dalton, A. Mazzoldi, D. De Rossi, I.I. Khayrullin, R.H. Baughman, “Pneumatic Carbon Nanotube Actuators”, Advanced Materials 2002, vol. 14, pp. 1728-1732.
    [18] C. Bartholome, A. Derre, O. Roubeau, C. Zakri and P. Poulin, “Electromechanical Properties of Nanotube–PVA Composite Actuator Bimorphs”, Nanotechnology 2008, vol. 19, pp. 1-6.
    [19] Y. Zhang, S. Iijima, “Elastic Response of Carbon Nanotube Bundles to Visible Light”, Physical Review Letters 1999, vol. 82, pp. 3472-3475.
    [20] S. Lu and B. Panchapakesan, “Nanotube Micro-Optomechanical Actuators”, Applied Physics Letters 2006, vol. 88, pp. 1-3.
    [21] S. Lu, S. V. Ahir, E. M. Terentjev and B. Panchapakesan, “Alignment Dependent Mechanical Responses of Carbon Nanotubes to Light”, Applied Physics Letters 2007, vol. 91, pp. 1-3.
    [22] S. Lu and B. Panchapakesan, “Nanotube Micro-Optomechanical Actuators”, Applied Physics Letters 2006, vol. 88, pp. 1-3.
    [23] S. Lu and B. Panchapakesan, “All-Optical Micromirrors From Nanotube MOMS With Wavelength Selectivity”, Journal of Microelectromechanical Systems 2007, vol. 16, pp. 1515-1523.
    [24] L. Yang, K. Setyowati, A. Li, S. Gong, and J. Chen, “Reversible Infrared Actuation of Carbon Nanotube-Liquid Crystalline Elastomer Nanocomposites”, Advanced Materials 2008, vol. 20, pp. 2271-2275.
    [25] M. S. Dresselhaus, G. Dresselhaus, Ph. Avouris, “Carbon Nanotubes Synthesis, Structure, Properties, and Applications”, Applied Physics 2001, vol. 80, pp. 32-37.
    [26] Y. J. Li, Z. Sun, S. P. Lau, G. Y. Chen, and B. K. Tay, “Carbon Nanotube Films Prepared by Thermal Chemical Vapor Deposition at Low Temperature for Field Emission Applications”, Applied Physics Letters 2001, vol. 79, pp. 1-3.
    [27] C.-M. Lin, Y.-T. Lee, S.-R. Yeh, and W. Fang, “Flexible Carbon Nanotubes Electrode for Neural Recording”, Biosensors and Bioelectronics 2009, vol. 24, pp. 2791-2797.
    [28] S. Lu and B. Panchapakesan, “Nanotube Micro-Optomechanical Actuators”, Applied Physics Letters 2006, vol. 88, pp. 1-3.
    [29] Y. Zhou, L. Hu, G.. Gruner, “A Method of Printing Carbon Nanotube Thin Films”, Applied Physics Letters 2006, vol. 88, pp. 1-3.
    [30] Y. D. Lee, K. S. Lee, Y. H. Lee, B. K. Ju, “Field Emission Properties of Carbon Nanotube Film Using a Spray Method”, Applied Surface Science2007, vol. 254, pp. 513-516.
    [31] L. Hu, G. Gruner, J. Gong, B Hornbostel, “Electrowetting Devices with Transparent Single-Walled Carbon Nanotube Electrodes”, Applied Physics Letters 2007, vol. 90, pp. 1-3.
    [32] I. Sayago, H. Santos, M. C. Horrillo, M. Aleixandre, M. J. Fernandez, E. Terrado, I. Tacchini, R. Aroz, W. K. Maser, A. M. Benito, M. T. Martinez, J. Cutierrez, E. Munoz, “Carbon Nanotube Networks as Gas Sensors for NO2 Detection”, Talanta 2008, vol. 77, pp. 758-764.
    [33] M. Kaempgen, C. K. Chan, J. Ma, Yi Cui, and G. Gruner, “Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes”, Nano Letters 2009, vol. 9, pp. 1872-1876.
    [34] L. Valentini, I. Armentano, and J. M. Kenny, “Sensors for sub-ppm NO2 Gas Detection Based on Carbon Nanotube Thin Films”, Applied Physics Letters 2003, vol. 82, pp. 961-963.
    [35] J. Li, Q. Liu, Y. Liu, S. Liu and S. Yao, “DNA Biosensor Based on Chitosan Film Doped with Carbon Nanotubes”, Analytical Biochemistry. 2005, vol. 346, pp. 107-114.
    [36] R. P. Fraser, P. Eisenklam, “Research into the Performance of Atomizers for Liquids”, Chemical Engineering Society 1953, vol. 7, pp. 52-68.
    [37] W. Ohnesorge, “Formation of Drops by Nozzles and The Breakup of Liquid Jets”, Applied Mathematics and Mechanics 1936, vol. 16, pp. 355–358.
    [38] 李冠憲, “多孔噴流霧化機制及其特性研究”, 國立成功大學航空太空工程學系碩士論文, 2007.
    [39] 中日噴霧股份有限公司- http://www.ikeuchi.com.tw/product/atomizing.html
    [40] N. Dombrowski and P. C. Hooper, “A Study of Sprays Formed by Two Impinging Jets”, Journal of Fluid Mechanics 1962, vol. 18, pp. 291-305.
    [41] 洪嘉宏, “中空錐形噴霧中連續相及離散相之動力特性研究,” 國立成功大學博士論文, 1991.
    [42] M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, R. E. Smalley, “The Role of Surfactant Adsorption During Ultrasonication in the Dispersion of Single-Walled Carbon Nanotubes”, Journal of Nanoscience and Nanotechnology 2003, vol. 3, pp. 81-86.
    [43] K. Yurekli , C. A. Mitchell and R. Krishnamootri, “Small-Angle Neutron Scattering From Surfactant-Assisted Aqueous Dispersions of Carbon Nanotubes”, Journal of the American Chemical Society 2004, vol. 126, pp.9902-9903 .
    [44] N. Froessling, “On the Evaporation of Falling Droplets”, Gerlands Beitr. Geophys. 1938, vol. 52, pp. 170-216.
    [45] W. R. Marshall, “Atomization and Spray Drying”, Chemical Engineering Progress 1954, Monograph Series No. 2, Vol. 50. Am. Institute of Chemical Engineers, New York.
    [46] C. E. Goering, L. E. Bode and M. R. Gebhardt., “Mathematical Modeling of Spray Droplet Deceleration and Evaporation”, Transactions of the ASAE 1972, vol. 15, pp. 220-225.
    [47] 禧通科技股份有限公司- http://www.m-comm.com.tw/p02-1c.asp
    [48] G. Binnig, C. F. Quate, C. Gerber, “Atomic Force Microscope”, Physical Review Letters 1986, vol. 56, pp. 930-933.
    [49] R. D. Piner, J. Zhu, F. Xu, S. Hong, C. A. Mirkin, “Dip-Pen Nanolithography”, Science 1999, vol. 283, pp. 661-663.
    [50] K. E. Petersen, “Micromechanical Light Modulator Array Fabricated on Silicon,” Applied Physics Letters 1977, vol. 31, pp. 521-523.
    [51] E. Obermeier, J. Lin and V. Schlichting, “Design and Fabrication of an Electrostatically Driven Microshutter,” in Technical Digest 7th International Conference on Solid State Sensors and Actuators 1993, pp. 132-135.
    [52] J. Mohr, M. Kohl and W. Menz, “Micro-Optical Switching by Electrostatic Linear Actuators with Large Displacements,” in Technical Digest 7th International Conference on Solid-State Sensors and Actuators 1993, pp. 120-123.
    [53] 陳揚哲, “微環型殘餘應力感測器出平面挫曲變形與拉伸應力感測之研究”, 國力清華大學動力機械系碩士論文, 2004.
    [54] S. P. Timoshenko, “Analysis of Bi-metal Thermostats”, Journal of Optical Society of America A 1925, vol. 11, pp. 233-255.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE