研究生: |
陳冠鄅 Chen, Kuan Yu |
---|---|
論文名稱: |
以奈米壓印技術開發氮化鎵量子結構晶格之數值分析研究 Numerical Analysis and Fabrication of GaN-Based Quantum Structure Lattice Arrays Using Nanoimprint Lithography |
指導教授: |
鄭克勇
Cheng, Keh Yung |
口試委員: |
謝光前
吳孟奇 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 83 |
中文關鍵詞: | 氮化鎵 、氮化銦鎵 、發光二極體 、有限差分時域 、奈米壓印 、光子晶體 |
外文關鍵詞: | GaN, InGaN, LED, FDTD, Nanoimprint, Photonics Crystal |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之主題在研究一個人造二維晶體結構”量子結構晶格”,討論其製作與光學效應之研究。其結構為二維正交結構,且其間距符合布拉格繞射之條件以控制表面放射。藉由時域有限差分法的模擬環境,探討在此次波長的結構中電磁波之傳遞現象,藉由光學晶體能帶圖,找出其特徵解於週期性結構之倒晶格邊界。並且透過品質因子的模擬,來探討量子結構晶格之共振波長。最終在其共振波長下呈現出光聚束之效果。
本研究使用軟性奈米壓印,實現量子結構晶格於氮化鎵/氮化銦鎵單層量子井磊晶結構中。軟性奈米壓印是將一經抗黏著鍍膜後之母片製作成一高分子軟膜,並透過其軟膜將奈米圖形轉印至所需基板上。在光致發光頻譜量測中,由於光在平面薄膜間的多重反射,導致多干涉峰值並影響量測,本研究發展一半經驗法則,藉由判斷原光致發光頻譜之干涉峰位置,產生一組餘弦校正方程式,來達到消除光在平面薄膜間的多重返射。
最終,量子結構晶格實現於氮化鎵/氮化銦鎵結構中,實驗結果與模擬結果相互符合。並針對其量子結構晶格提出未來改善與其光電元件實作可能性。
In this dissertation, the fabrication of an artificial structure “Quantum Structure Lattice” (QSL) and its optical properties have been investigated. The QSL consists of a two dimensional orthogonal array of artificial structures with a pitch matches with the Bragg diffraction condition such that it can be used to control the surface emission. The numerical analysis technique based on “finite-difference time-domain (FDTD)” is used to explore the propagation behavior of electromagnetic waves in these sub-wavelength structures. By calculating the optical band structure, the eigenvalue can be found at the boundary of the periodic structure in the reciprocal lattice. After that, the resonant wavelength of QSL is analyzed by the quality factor simulation. Finally, the collimation effect is demonstrated by simulation at the resonant wavelength.
In this study, a soft nanoimprint (soft-NIL) technique is employed to fabricate QSL in InGaN/GaN single quantum well (SQW) structures. The soft-NIL uses a polymer mold to transfer nanoscale pattern to the targeted substrate, where the soft mold is made from an anti-sticking coated Si master. In photoluminescence (PL) measurement of multiple layer heterostructures, numerous interference peaks are observed due to multiple reflections between planar interfaces, which make the interpretation of the PL spectrum difficult. A semi-empirical approach is developed. A correction cosine function is generated by judging positions of interference peaks of the PL spectrum to eliminate multiple reflections of planar multiple layered films.
Finally, QSL is successfully demonstrated in InGaN/GaN SQWs. The experiment results are verified by FDTD simulations. Some improvements of pattern design and the possibility of optoelectronic device applications are discussed.
[1] Wu, Jl, et al. "Unusual properties of the fundamental band gap of InN." Applied Physics Letters 80.21 (2002): 3967-3969. "Unusual properties of the fundamental band gap of InN." Applied Physics Letters 80.21 (2002): 3967-3969.
[2] Yim, W. M., et al. "Epitaxially grown AlN and its optical band gap." Journal of Applied Physics 44.1 (1973): 292-296.
[3] Nakamura, Shuji, et al. "Blue InGaN-based laser diodes with an emission wavelength of 450 nm." Applied Physics Letters 76.1 (2000): 22-24.
[4] Hofstetter, Daniel, et al. "GaN/AlN-based quantum-well infrared photodetector for 1.55 μm." Applied physics letters 83.3 (2003): 572-574..
[5] Nakamura, Shuji, Takashi Mukai, and Masayuki Senoh. "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes."Applied Physics Letters 64.13 (1994): 1687-1689.
[6] Schnitzer, I., et al. "30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes." Applied Physics Letters 63.16 (1993): 2174-2176.
[7] Fujii, T., et al. "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening." Applied physics letters 84.6 (2004): 855-857.
[8] Orita, Kenji, et al. "High-extraction-efficiency blue light-emitting diode using extended-pitch photonic crystal." Japanese journal of applied physics 43.8S (2004): 5809.
[9] Yablonovitch, Eli. "Inhibited spontaneous emission in solid-state physics and electronics." Physical review letters 58.20 (1987): 2059.
[10] Matioli, Elison, et al. "GaN‐based embedded 2D photonic crystal LEDs: Numerical optimization and device characterization." physica status solidi (c)6.S2 (2009): S675-S679.
[11] Rangel, Elizabeth, et al. "Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes." Applied physics letters 98.8 (2011): 081104.
[12] Cheng, K. Y., Chien-Chia Cheng, and K. C. Hsieh. "Control of spontaneous emission in InGaAs/GaAs quantum structure lattices." Applied Physics Letters99.16 (2011): 163106.
[13] Cheng, K. Y., Chien-Chia Cheng, and K. C. Hsieh. "Two-dimensional distributed-feedback in InGaAs/GaAs quantum structure lattice arrays." Applied Physics Letters 101.14 (2012): 141127.
[14] Chou, Stephen Y., Peter R. Krauss, and Preston J. Renstrom. "Nanoimprint lithography." Journal of Vacuum Science & Technology B 14.6 (1996): 4129-4133.
[15] Chou, Stephen Y., et al. "Sub-10 nm imprint lithography and applications."Journal of Vacuum Science & Technology B 15.6 (1997): 2897-2904.
[16] Meneou, K., and K. Y. Cheng. "Soft photocurable nanoimprint lithography for compound semiconductor nanostructures." Journal of Vacuum Science & Technology B 26.1 (2008): 156-158.
[17] Hofstetter, Daniel, et al. "Room-temperature pulsed operation of an electrically injected InGaN/GaN multi-quantum well distributed feedback laser." Applied physics letters 73.15 (1998): 2158-2160.
[18] Bloembergen, Nicolaas, Edward Mills Purcell, and Robert V. Pound. "Relaxation effects in nuclear magnetic resonance absorption." Physical review 73.7 (1948): 679.
[19] Munk, B., and G. Burrell. "Plane-wave expansion for arrays of arbitrarily oriented piecewise linear elements and its application in determining the impedance of a single linear antenna in a lossy half-space." IEEE transactions on antennas and propagation 27.3 (1979): 331-343.
[20] Sainidou, R., et al. "A layer-multiple-scattering method for phononic crystals and heterostructures of such." Computer Physics Communications 166.3 (2005): 197-240.
[21] Li, Zhi-Yuan, and Lan-Lan Lin. "Photonic band structures solved by a plane-wave-based transfer-matrix method." Physical Review E 67.4 (2003): 046607.
[22] Sullivan, Dennis M. Electromagnetic simulation using the FDTD method. John Wiley & Sons, 2013.
[23] Berenger, Jean-Pierre. "A perfectly matched layer for the absorption of electromagnetic waves." Journal of computational physics 114.2 (1994): 185-200.
[24] See https://www.lumerical.com for FDTD solutions, Lumerical Solutions, Inc.
[25] Bloch, Felix. "Über die quantenmechanik der elektronen in kristallgittern." Zeitschrift für physik 52.7-8 (1929): 555-600.
[26] Rudan, Massimo. "Time-Independent Schrödinger Equation." Physics of Semiconductor Devices. Springer New York, 2015. 155-174.
[27] Muth, J. F., et al. "Absorption coefficient and refractive index of GaN, AIN and AlGaN alloys." MRS Proceedings. Vol. 537. Cambridge University Press, 1998.
[28] Dowling, Jonathan P., et al. "The photonic band edge laser: A new approach to gain enhancement." Journal of Applied Physics 75.4 (1994): 1896-1899.
[29] Woldeyohannes, Mesfin, and Sajeev John. "Coherent control of spontaneous emission near a photonic band edge." Journal of Optics B: Quantum and Semiclassical Optics 5.2 (2003): R43.
[30] Dill, C., et al. "Effect of detuning on the angular emission pattern of high-efficiency microcavity light-emitting diodes." Applied physics letters 73.26 (1998): 3812-3814.
[31] Wierer, J. J., et al. "InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures." Applied Physics Letters 84.19 (2004): 3885-3887.
[32] Chou, Stephen Y., Peter R. Krauss, and Preston J. Renstrom. "Imprint lithography with 25-nanometer resolution." Science 272.5258 (1996): 85.
[33] Bender, M., et al. "Status and prospects of UV-nanoimprint technology." Microelectronic Engineering 83.4 (2006): 827-830.
[34] Xia, Younan, and George M. Whitesides. "Soft lithography." Annual review of materials science 28.1 (1998): 153-184.
[35] Chen, Y., et al. "Soft nanoimprint lithography." Photonics Asia 2004. International Society for Optics and Photonics, 2005.
[36] Srinivasan, Uthara, et al. "Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines." Journal of Microelectromechanical Systems 7.2 (1998): 252-260.
[37] Kobrin, Boris, et al. "Molecular vapor deposition (MVD) for improved SAM coatings." MOEMS-MEMS Micro & Nanofabrication. International Society for Optics and Photonics, 2005.
[38] Namvar, E., and M. Fattahi. "Interference effects on the photoluminescence spectrum of GaN/InxGa 1− xN single quantum well structures." Journal of Luminescence 128.1 (2008): 155-160.
[39] Holm, R. T., et al. "Interference effects in luminescence studies of thin films."Applied optics 21.14 (1982): 2512-2519.
[40] Zhuang, D., and J. H. Edgar. "Wet etching of GaN, AlN, and SiC: a review."Materials Science and Engineering: R: Reports 48.1 (2005): 1-46.
[41] Bardwell, J. A., et al. "Ultraviolet photoenhanced wet etching of GaN in K2S2O8 solution." Journal of Applied Physics 89.7 (2001): 4142-4149.
[42] Ramesh, V., et al. "Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well." Journal of Applied Physics 107.11 (2010): 114303.
[43] Kawakami, Y., et al. "Optical properties of InGaN/GaN nanopillars fabricated by postgrowth chemically assisted ion beam etching." Journal of Applied Physics107.2 (2010): 023522.
[44] Sekiguchi, Hiroto, Katsumi Kishino, and Akihiko Kikuchi. "Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate." Applied physics letters 96.23 (2010): 231104.
[45] Kouno, Tetsuya, et al. "Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission." Optics express 17.22 (2009): 20440-20447.