研究生: |
劉鈰誼 Liu, Shih-Yi |
---|---|
論文名稱: |
臨場溼式穿透電子顯微鏡應用於奈米氫氣泡成長動態之研究 In situ Liquid Cell TEM Study of Growth Dynamics of Hydrogen Nanobubble |
指導教授: |
陳福榮
Chen, Fu-Rong |
口試委員: |
劉全璞
Liu, Chuan-Pu 張立 Chang, Li 吳文偉 Wu, Wen-Wei 曾繁根 Tseng, Fan-Gang |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 臨場溼式電子顯微鏡 、奈米氫氣泡 、水輻射分解 、氫能 、輻射合成奈米顆粒 |
外文關鍵詞: | in-situ liquid cell EM, hydrogen nanobubble, water radiolysis, hydrogen, radiolysis synthesized nanoparticle |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於此研究第一部份,我們使用臨場液態腔體穿透式電子顯微術來產生奈米氫氣泡於準二維液體系統中,電子束扮演觀察探針來探究且記錄奈米氫氣泡的動態並同時提供能量輸入來誘發輻射輔助摘剪反應(RAAR)的發生,根據奈米氫氣泡的動態分析結果,RAAR反應生成的奈米氫氣泡處於氫氣過飽和的溶液中因而確保其穩定性,以奈米氣泡形式所貯存的氫氣其質量貯存密度可達3.4 wt%(常溫常壓下)此外其可使用的氫氣損失已低至0.1 (g/h)/kg(已符合美國能源部所訂立2010年的標準)而理想狀況下可進一步低至0.0072 (g/h)/kg,目前研究結果顯示奈米氫氣泡極具儲氫應用方面的潛力。於此研究第二部份,我們則使用電子束來將原本奈米金顆粒的質量移轉到奈米氫氣泡的表面並形成更細小的奈米金顆粒,我們發現傳統用於輻射輔助奈米顆粒合成的模型可與我們的實驗結果相吻合,最後經由計算我們推測奈米顆粒可於氣泡表面滑動,部分可歸因於入射電子的動量轉移。
In this research, at first section, we utilize in situ liquid cell TEM to generate hydrogen nanobubbles (HNBs) within liquid cell composed quasi-2D liquid system. The electron beam of TEM serves as illumination source to probe as well as record the kinetics of HNB and simultaneously provides energy input to trigger the radiolysis assisted abstraction reaction (RAAR). According to the kinetics analysis result, the RAAR generated HNBs are enclosed within hydrogen gas supersaturated liquid which ensure the stability of HNBs. The stored hydrogen weight capacity can reach as high as 3.4 wt% at ambient condition and the loss of usable hydrogen as low as 0.1 (g/h)/kg which already fit the DOE target in 2010 and this value ideally could be 0.0072 (g/h)/kg. Current result shows HNBs could be a candidate for hydrogen storage. At second part, we use electron beam to ignite the process of mass transferring from original gold nanoparticle to precipitate on HNB surface with fine size. The reaction model proposed from radiation assisted nanoparticle synthesis is in agreement with our experiment result. Finally, the sliding of gold nanoparticles on HNB surface may attribute to the momentum transferring from incident electrons to precipitated gold nanoparticles.
1. Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. &Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater. 2, 532–536 (2003).
2. Zheng, H., Claridge, S. a, Minor, A. M., Alivisatos, a P. &Dahmen, U. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 9, 2460–5 (2009).
3. Zheng, H. et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science (New York, N.Y.) 324, 1309–12 (2009).
4. Jonge, N. d., Peckys, D. B., Kremers, G. J. &Piston, D. W. Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. 106, 2159–2164 (2009).
5. White, E. R., Mecklenburg, M., Singer, S. B., Aloni, S. &Regan, B. C. Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express 4, 4–6 (2011).
6. Tai, K., Liu, Y. &Dillon, S. J. In Situ Cryogenic Transmission Electron Microscopy for Characterizing the Evolution of Solidifying Water Ice in Colloidal Systems. Microsc. Microanal. 20, 330–337 (2014).
7. Liao, H.-G., Cui, L., Whitelam, S. &Zheng, H. Real-time imaging of Pt3Fe nanorod growth in solution. Science (New York, N.Y.) 336, 1011–4 (2012).
8. Yuk, J. M. et al. High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells. Science (80-. ). 336, 61–64 (2012).
9. Aabdin, Z. et al. Bonding pathways of gold nanocrystals in solution. Nano Lett. 14, 6639–6643 (2014).
10. Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–8 (2012).
11. Woehl, T. J., Evans, J. E., Arslan, I., Ristenpart, W. D. &Browning, N. D. Direct in Situ Determination of the Mechanisms Controlling Nanoparticle Nucleation and Growth. ACS Nano 6, 8599–8610 (2012).
12. Evans, J. E., Jungjohann, K. L., Browning, N. D. &Arslan, I. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11, 2809–2813 (2011).
13. Liao, H. &Zheng, H. Liquid Cell Transmission Electron Microscopy Study of Platinum Iron. J. Am. Chem. Soc. 135, 5038–5043 (2013).
14. Zhu, G. et al. In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chem. Commun. 50, 9447 (2014).
15. Peckys, D. B. &deJonge, N. 293[g].Visualizing Gold Nanoparticle Uptake in Live Cells with Liquid. Nano Lett. 11, 1733–1738 (2011).
16. Jiang, W., Kim, B. Y. S., Rutka, J. T. &Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).
17. Weston, A. E., Armer, H. E. J. &Collinson, L. M. Towards native-state imaging in biological context in the electron microscope. J. Chem. Biol. 3, 101–112 (2010).
18. Schrand, A. M., Schlager, J. J., Dai, L. &Hussain, S. M. Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nat. Protoc. 5, 744–757 (2010).
19. Richard, J. P. et al. Cell-penetrating peptides: A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585–590 (2003).
20. Lundberg, M. &Johansson, M. Positively Charged DNA-Binding Proteins Cause Apparent Cell Membrane Translocation. Biochem. Biophys. Res. Commun. 291, 367–371 (2002).
21. Chen, Q. et al. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett. 13, 4556–4561 (2013).
22. Woehl, T. J. et al. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging. Sci. Rep. 4, 6854 (2014).
23. Wang, C., Qiao, Q., Shokuhfar, T. &Klie, R. F. High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv. Mater. 26, 3410–3414 (2014).
24. Proetto, M. T. et al. Dynamics of soft nanomaterials captured by transmission electron microscopy in liquid water. J. Am. Chem. Soc. 136, 1162–1165 (2014).
25. Plamper, F. A. et al. Spontaneous assembly of miktoarm stars into vesicular interpolyelectrolyte complexes. Macromol. Rapid Commun. 34, 855–860 (2013).
26. Mirsaidov, U. M., Zheng, H., Casana, Y. &Matsudaira, P. Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J. 102, L15–L17 (2012).
27. Mirsaidov, U. M., Zheng, H., Bhattacharya, D., Casana, Y. &Matsudaira, P. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. 109, 7187–7190 (2012).
28. Huang, T.-W. et al. Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab Chip 12, 340–7 (2011).
29. Grogan, J. M., Schneider, N. M., Ross, F. M. &Bau, H. H. Bubble and pattern formation in liquid induced by an electron beam. Nano Lett. 14, 359–64 (2014).
30. Huang, T.-W. et al. Dynamics of hydrogen nanobubbles in KLH protein solution studied with in situ wet-TEM. Soft Matter 9, 8856–8861 (2013).
31. Wang, C., Shokuhfar, T. &Klie, R. F. Precise In Situ Modulation of Local Liquid Chemistry via Electron Irradiation in Nanoreactors Based on Graphene Liquid Cells. Adv. Mater. 28, 7716–7722 (2016).
32. Schneider, N. M. et al. Electron–Water Interactions and Implications for Liquid Cell Electron Microscopy. J. Phys. Chem. C 118, 22373–22382 (2014).
33. Tomo, Y., Takahashi, K., Nishiyama, T., Ikuta, T. &Takata, Y. Nanobubble nucleation studied using Fresnel fringes in liquid cell electron microscopy. Int. J. Heat Mass Transf. 108, 1460–1465 (2017).
34. Liu, Y. &Dillon, S. J. In situ observation of electrolytic H2 evolution adjacent to gold cathodes. Chem. Commun. 50, 1761 (2014).
35. Lohse, D. &Zhang, X. Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87, 981–1035 (2015).
36. Alheshibri, M., Qian, J., Jehannin, M. &Craig, V. S. J. A History of Nanobubbles. Langmuir 32, 11086–11100 (2016).
37. Oh, S. H., Yoon, S. H., Song, H., Han, J. G. &Kim, J. M. Effect of hydrogen nanobubble addition on combustion characteristics of gasoline engine. Int. J. Hydrogen Energy 38, 14849–14853 (2013).
38. Oh, S. H., Han, J. G. &Kim, J. M. Long-term stability of hydrogen nanobubble fuel. Fuel 158, 399–404 (2015).
39. Zhu, J. et al. Cleaning with Bulk Nanobubbles. Langmuir 32, 11203–11211 (2016).
40. Wu, Z. H. et al. Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles. J. Colloid Interface Sci. 328, 10–14 (2008).
41. Liu, G., Wu, Z. &Craig, V. S. J. Cleaning of Protein-Coated Surfaces Using Nanobubbles: An Investigation Using a Quartz Crystal Microbalance. J. Phys. Chem. C 112, 16748–16753 (2008).
42. Zimmerman, W. B., Tesař, V. &Bandulasena, H. C. H. Towards energy efficient nanobubble generation with fluidic oscillation. Curr. Opin. Colloid Interface Sci. 16, 350–356 (2011).
43. Baylis, J. R. et al. Self-propelled particles that transport cargo through flowing blood and halt hemorrhage. Sci. Adv. 1, e1500379–e1500379 (2015).
44. Ishida, N., Inoue, T., Miyahra, M. &Higashitani, K. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atmomic force microscopy. 16, 6377–6380 (2000).
45. Plesset, M. S. &Sadhal, S. S. On the stability of gas bubbles in liquid-gas solutions. Appl. Sci. Res. 38, 133–141 (1982).
46. Ljunggren, S. &Eriksson, J. C. The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction. Colloids Surfaces A Physicochem. Eng. Asp. 129–130, 151–155 (1997).
47. Simonsen, A. C., Hansen, P. L. &Klösgen, B. Nanobubbles give evidence of incomplete wetting at a hydrophobic interface. J. Colloid Interface Sci. 273, 291–299 (2004).
48. Zhang, X. H., Quinn, A. &Ducker, W. A. Nanobubbles at the interface between water and a hydrophobic solid. Langmuir 24, 4756–4764 (2008).
49. Zhang, X., Chan, D. Y. C., Wang, D. &Maeda, N. Stability of interfacial nanobubbles. Langmuir 29, 1017–1023 (2013).
50. Zhang, X., Lhuissier, H., Sun, C. &Lohse, D. Surface nanobubbles nucleate microdroplets. Phys. Rev. Lett. 112, 1–5 (2014).
51. Karpitschka, S. et al. Nonintrusive optical visualization of surface nanobubbles. Phys. Rev. Lett. 109, 1–5 (2012).
52. Chan, C. U. &Ohl, C. D. Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics. Phys. Rev. Lett. 109, 1–5 (2012).
53. Tyrrell, J. W. G. &Attard, P. Images of Nanobubbles on Hydrophobic Surfaces and Their Interactions. Phys. Rev. Lett. 87, 176104 (2001).
54. Ducker, W. A. Contact angle and stability of interfacial nanobubbles. Langmuir 25, 8907–8910 (2009).
55. Brenner, M. &Lohse, D. Dynamic Equilibrium Mechanism for Surface Nanobubble Stabilization. Phys. Rev. Lett. 101, 214505 (2008).
56. Bunkin, N. F., Kochergin, A.V., Lobeyev, A.V., Ninham, B. W. &Vinogradova, O. I. Existence of charged submicrobubble clusters in polar liquids as revealed by correlation between optical cavitation and electrical conductivity. Colloids Surfaces A Physicochem. Eng. Asp. 110, 207–212 (1996).
57. Borkent, B. M., DeBeer, S., Mugele, F. &Lohse, D. On the shape of surface nanobubbles. Langmuir 26, 260–268 (2010).
58. Zhang, L. et al. Imaging interfacial micro- and nano-bubbles by scanning transmission soft X-ray microscopy. J. Synchrotron Radiat. 20, 413–418 (2013).
59. Ohgaki, K., Khanh, N. Q., Joden, Y., Tsuji, A. &Nakagawa, T. Physicochemical approach to nanobubble solutions. Chem. Eng. Sci. 65, 1296–1300 (2010).
60. Uchida, T. et al. Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater. Nanoscale Res. Lett. 6, 295 (2011).
61. Kang, S.-T., Lin, J.-L., Wang, C.-H., Chang, Y.-C. &Yeh, C.-K. Internal polymer scaffolding in lipid-coated microbubbles for control of inertial cavitation in ultrasound theranostics. J. Mater. Chem. B 3, 5938–5941 (2015).
62. Fan, C. H. et al. Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood-brain barrier opening and brain-tumor drug delivery. Acta Biomater. 15, 89–101 (2015).
63. Shin, D. et al. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells. Nat. Commun. 6, 6068 (2015).
64. Weijs, J. H., Seddon, J. R. T. &Lohse, D. Diffusive shielding stabilizes bulk nanobubble clusters. Chemphyschem 13, 2197–204 (2012).
65. Liu, S. Y. et al. Quasi-2D liquid cell for high density hydrogen storage. Nano Energy 31, 218–224 (2017).
66. Mitchell, D. R. G. &Schaffer, B. Scripting-customised microscopy tools for Digital Micrograph??? Ultramicroscopy 103, 319–332 (2005).
67. Buxton, G.V., Greenstock, C. L., Helman, W. P. &Ross, A. B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (???OH/???O??? in Aqueous Solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988).
68. LeCaër, S. Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water 3, 235–253 (2011).
69. Schwarz, H. a. Free radicals generated by radiolysis of aqueous solutions. J. Chem. Educ. 58, 101 (1981).
70. Schwarz, H. A. &Dodson, R. W. Equilibrium between hydroxyl radicals and thallium(II) and the oxidation potential of hydroxyl(aq). J. Phys. Chem. 88, 3643–3647 (1984).
71. Henglein, A. J. W. T. Spinks. R. J. Woods: An Introduction to Radiation Chemistry, Third Edition, John-Wiley and Sons, Inc., New York, Toronto 1990. ISBN 0-471-61403-3. 574 Seiten, Preis: DM 91, 45. Berichte der Bunsengesellschaft für Phys. Chemie 95, 451–451 (1991).
72. Avrami, M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J. Chem. Phys. 9, 177–184 (1941).
73. Zhang, L., Zhang, X., Zhang, Y., Hu, J. &Fang, H. The length scales for stable gas nanobubbles at liquid/solid surfaces. Soft Matter 6, 4515–419 (2010).
74. Weijs, J. &Lohse, D. Why Surface Nanobubbles Live for Hours. Phys. Rev. Lett. 110, 54501 (2013).
75. Chen, Q., Wiedenroth, H. S., German, S. R. &White, H. S. Electrochemical Nucleation of Stable N2 Nanobubbles at Pt Nanoelectrodes. J. Am. Chem. Soc. 137, 12064–12069 (2015).
76. Sch?nherr, H., Hain, N., Walczyk, W., Wesner, D. &Druzhinin, S. I. Surface nanobubbles studied by atomic force microscopy techniques: Facts, fiction, and open questions. Jpn. J. Appl. Phys. 55, 08NA01 (2016).
77. Yasui, K., Tuziuti, T., Kanematsu, W. &Kato, K. Dynamic Equilibrium Model for a Bulk Nanobubble and a Microbubble Partly Covered with Hydrophobic Material. Langmuir (2016). doi:10.1021/acs.langmuir.5b04703
78. SAKINTUNA, B., LAMARIDARKRIM, F. &HIRSCHER, M. Metal hydride materials for solid hydrogen storage: A review☆. Int. J. Hydrogen Energy 32, 1121–1140 (2007).
79. Dalebrook, A. F., Gan, W., Grasemann, M., Moret, S. &Laurenczy, G. Hydrogen storage: beyond conventional methods. Chem. Commun. 49, 8735 (2013).
80. Rosi, N. L. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science (80-. ). 300, 1127–1129 (2003).
81. Welch, G. C., San Juan, R. R., Masuda, J. D. &Stephan, D. W. Reversible, Metal-Free Hydrogen Activation. Science (80-. ). 314, 1124–1126 (2006).
82. Murray, L. J., Dincă, M. &Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294 (2009).
83. Schlapbach, L. &Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–8 (2001).
84. Target Explanation Document:Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles. (2015).
85. Raghavan, J. Evolution of cure, mechanical properties, and residual stress during electron beam curing of a polymer composite. Compos. Part A Appl. Sci. Manuf. 40, 300–308 (2009).
86. Getoff, N. Radiation-induced degradation of water pollutants—state of the art. Radiat. Phys. Chem. 47, 581–593 (1996).
87. Merga, G., Milosavljevic, B. H. &Meisel, D. Radiolytic hydrogen yields in aqueous suspensions of gold particles. J. Phys. Chem. B 110, 5403–5408 (2006).
88. Giacometti, G. Free Radicals from Citric Acid*. 3400–3402 (1966).
89. Hanžić, N., Jurkin, T., Maksimović, A. &Gotić, M. The synthesis of gold nanoparticles by a citrate-radiolytical method. Radiat. Phys. Chem. 106, 77–82 (2015).
90. Colucci, J., Montalvo, V., Hernandez, R. &Poullet, C. Electrochemical oxidation potential of photocatalyst reducing agents. Electrochim. Acta 44, 2507–2514 (1999).
91. Nowicka, A. M., Hasse, U., Hermes, M. &Scholz, F. Hydroxyl radicals attack metallic gold. Angew. Chemie - Int. Ed. 49, 1061–1063 (2010).
92. Schechter, R. S., Graciaa, A. &Lachaise, J. The Electrical State of a Gas/Water Interface. J. Colloid Interface Sci. 204, 398–399 (1998).
93. Duval, E., Adichtchev, S., Sirotkin, S. &Mermet, A. Long-lived submicrometric bubbles in very diluted alkali halide water solutions. Phys. Chem. Chem. Phys. 14, 4125–32 (2012).
94. Belloni, J. Nucleation, growth and properties of nanoclusters studied by radiation chemistry: Application to catalysis. Catal. Today 113, 141–156 (2006).
95. Gachard, E. et al. Radiation-induced and chemical formation of gold clusters. New J. Chem. 22, 1257–1265 (1998).
96. Xin, H. &Zheng, H. In situ Observation of Oscillatory Growth of Bismuth Nanoparticles. 1–5 (2012).
97. Zheng, H., Mirsaidov, U. M., Wang, L.-W. &Matsudaira, P. Electron beam manipulation of nanoparticles. Nano Lett. 12, 5644–8 (2012).
98. Gatsogiannis, C. &Markl, J. Keyhole limpet hemocyanin: 9-A CryoEM structure and molecular model of the KLH1 didecamer reveal the interfaces and intricate topology of the 160 functional units. J. Mol. Biol. 385, 963–83 (2009).
99. Bernstein, F. C. et al. The Protein Data Bank. Eur. J. Biochem. 80, 319–324 (1977).
100. V.Marković, D. Nikolić, O. I. M. Pulse-radiolysis of glycine and alanine at pH 0–7.pdf. Int. J. Radiat. Phys. Chem. 6, 227–232 (1974).
101. Neta, P. &Schuler, R. H. Rate Constants for Reaction of Hydrogen Atoms with Compounds of Biochemical Interest. Radiat. Res. 47, 612–627 (1971).
102. Fraxedas, J., Verdaguer, A., Sanz, F., Baudron, S. &Batail, P. Water nanodroplets confined in molecular nanobeakers. Surf. Sci. 588, 41–48 (2005).
103. Pang, E. L., Vo, N. Q., Philippe, T. &Voorhees, P. W. Modeling interface-controlled phase transformation kinetics in thin films. J. Appl. Phys. 117, 1–8 (2015).
104. Lu, D., Li, W., Hu, S., Xiao, F. &Tang, R. Uniform nanocrystalline AB5-type hydrogen storage alloy: Preparation and properties as negative materials of Ni/MH battery. Int. J. Hydrogen Energy 31, 678–682 (2006).
105. Filinchuk, Y. E. &Yvon, K. Boron-Induced Hydrogen Localization in the Novel Metal Hydride LaNi3BHx (x = 2.5−3.0). Inorg. Chem. 44, 4398–4406 (2005).
106. Zhu, M., Wang, H., Ouyang, L. Z. &Zeng, M. Q. Composite structure and hydrogen storage properties in Mg-base alloys. Int. J. Hydrogen Energy 31, 251–257 (2006).
107. Kuriiwa, T. et al. New V-based alloys with high protium absorption and desorption capacity. J. Alloys Compd. 293–295, 433–436 (1999).
108. Rzepka, M., Lamp, P. &dela Casa-Lillo, M. A. Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes. J. Phys. Chem. B 102, 10894–10898 (1998).
109. Rosi, N. L. et al. Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–9 (2003).
110. Welch, G. C., San Juan, R. R., Masuda, J. D. &Stephan, D. W. Reversible, metal-free hydrogen activation. Science 314, 1124–6 (2006).
111. Murray, L. J., Dincă, M. &Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38, 1294–314 (2009).
112. Li, Y., Xie, L., Liu, Y., Yang, R. &Li, X. Favorable Hydrogen Storage Properties of M(HBTC)(4,4′-bipy)·3DMF (M = Ni and Co). Inorg. Chem. 47, 10372–10377 (2008).
113. Yu, G. C. &Yen, S. K. Hydrogen diffusion coefficient of silicon nitride thin films. Appl. Surf. Sci. 201, 204–207 (2002).
114. Koplik, J. &Maldarelli, C. Diffusivity and Hydrodynamic Drag of Nanoparticles at a Vapor-liquid Interface. 24303, 1–12 (2016)