簡易檢索 / 詳目顯示

研究生: 李亞叡
Ya-Jui Lee
論文名稱: 多閘極穿隧式奈米碳管場效電晶體之電性研究
Investigation of electrical characteristics for multi gate tunneling-carbon nanotube field effect transistor
指導教授: 張廖貴術
Kuei-Shu Chang-Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 92
中文關鍵詞: carbon nanotubetunnelingmulti gateCNFETCNT
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的蕭基特式碳管場效電晶體(Schottky barrier CNFET)發展至今,已廣泛的被許多學者研究,雖有成熟的製程技術與操作原理,但隨著時代的演進,SB-CNFET在電性上的表現卻無法有所突破,因此有許多新穎的碳管電晶體結構也漸漸開始被發展。
    本論文的研究主軸主要是設計多閘極碳管電晶體結構,將穿隧效應的物理現象應用在奈米碳管場效電晶體中,使其能夠有優越的電特性。由於在穿隧效應發生時,電子能否通過通道是取決於穿隧能障的寬度,而穿隧能障則由閘極電場所控制,並且電子的穿隧機率會和閘極電場呈指數關係,因此穿隧電流的變化對閘極電場的控制將變得相當敏銳。我們就是利用這種方式來開關碳管電晶體,由實驗所得到的結果顯示,On/Off ratio高達近8個數量級,而Subthreshold swing也達到41mV/dec。在論文中,我們也會利用低溫量測系統進行變溫量測以驗證穿隧效應的物理機制。
    在元件結構材料方面,我們會針對閘極介電層的厚度/介電係數對電性上的影響做深入探討。由實驗結果得知,閘介電層EOT(等效氧化層厚度)的大小會對元件電性有一定的影響。除此之外,我們首次使用了在製程上有許多優點的複晶矽(N+ poly)作為源極、汲極的材料,實驗結果雖然顯示複晶矽電極在正常的操作電壓下,電流大小仍無法和金屬電極相比,但對於導通電流原本就不大的碳管電晶體而言仍是在可接受的範圍,未來非常適合應用於低功率元件的發展。


    目錄 摘要.................................................................................................................I 致謝...............................................................................................................III 總目錄.........................................................................................................V 圖目錄.........................................................................................................VII 第一章 導論……………………………………………………1 1.1奈米碳管基本特性簡介..........................................................2 1.2奈米碳管作為電子元件上的優勢..........................................3 1.3奈米碳管在場效電晶體(FET)上的發展.................................4 1.3.1傳統蕭特基式奈米碳管場效電晶體(SB-CNFET)........6 1.3.2 改良式奈米碳管電晶體................................................8 1.4 論文架構...............................................................................10 第二章 元件結構設計與製程………………………………20 2.1 元件結構...............................................................................20 2.1.1 N-I-N能帶之多重閘極結構............................................21 2.1.2 P-I-N能帶之多重閘極結構............................................21 2.2 光罩設計佈局.......................................................................22 2.3元件製作流程........................................................................23 2.4碳管旋鍍技術........................................................................26 2.5碳管粉末規格........................................................................27 2.6奈米碳管與金屬間之接觸阻抗............................................28 第三章 多閘極碳管電晶體之穿隧效應電性量測結果與討 論……………………………………………………37 3.1研究動機..............................................................................................37 3.2金屬性碳管之電崩潰測試..............................................................38 3.3元件結構及操作原理.......................................................................41 3.4穿隧式碳管電晶體電特性量測結果與討論.............................44 3.4.1下閘極對電性上之影響.....................................................45 3.4.2多閘極之Id-Vg與Id-Vd結果討論..................................46 3.5結論........................................................................................................48 第四章 低溫下多閘極碳管電晶體量測以及不同結構材料 之探討……………………………………………63 4.1研究動機................................................................................63 4.2穿隧效應之變溫量測結果與討論........................................64 4.3 不同結構材料之多閘極碳管電晶體結果與討論...............68 4.3.1 閘介電層材料及厚度比較..........................................68 4.3.2 N型複晶矽(N+ Poly)作為S/D電極...........................70 4.4 非對稱電場結構之多閘極碳管電晶體...............................71 4.5結論........................................................................................73 第五章 結論與後續建議………………………………………85 5.1 結論......................................................................................................85 5.2後續建議...............................................................................................86 參考文獻.....................................................................................................88

    [1] C. H. Choi, T. S. Jeon, R. Clark, and D. L. Kwong, ” Electrical Properties and Thermal Stability of CVD HfOxNy Gate Dielectric With Poly-Si Gate Electrode”, IEEE EDL, VOL. 24, NO. 4, p. 215, 2003
    [2] Alexei Svizhenko, M. P. Anantram, and T. R. Govindan,” Ballistic Transport and Electrostatics in Metallic Carbon Nanotubes” IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 4, NO. 5, p. 557, 2005
    [3] Ali Javey1, Jing Guo, Qian Wang, Mark Lundstrom and Hongjie Dai1”Ballistic carbon nanotube field-effect transistors” NATURE VOL 424, p. 654, 2003
    [4] W. Hoenlein, F. Kreupl, G.S. Duesberg, A.P. Graham, M. Liebau, R. Seidel, E. Unger” Carbon nanotubes for microelectronics: status and future prospects” Materials Science and Engineering C 23, p. 663–669, 2003
    [5] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl and R. E. Smalley. “C-60 - Buckminsterfullerene", Nature, Vol.318, p.162-163, 1985
    [6]. C. Zhou, J. Kong, and Hongjie Dai, “Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters”, Appl. Phys. Lett. vol. 76, pp. 1597-1599, 2000
    [7]. A. Javey, M. Shim, and H. Dai, “Electrical properties and devices of large-diameter single-walled carbon nanotubes,” Appl. Phys. Lett., vol. 80, pp. 1064-1066, 2002
    [8] Teri Wang Odom, Jin-Lin Huang, Philip Kim and Charles M. Liebe,”Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature, Vol.391, p.62-64, 1998.
    [9]. J. W. Mintmire, B. I. Dunlap, and C. T. White,” Are fullerene tubules metallic?”, Phys. Rev. Lett., vol. 68, pp. 631-634, 1992
    [10]. J. Wild□er et al., “Atomic structure and electronic properties of single-walled carbon nanotubes,” Nature vol. 391, pp. 59-61, 1998
    [11]. F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, W.Honlein,” Carbon nanotubes in interconnect applications,” Microelectronic Engineering, vol. 64, pp. 399-408, 2002
    [12]. J. Hone, “Carbon nanotube Topics in Applied Physics,”pp. 273, 2001
    [13]. H. Dai, E. W. Wong, and C. M. Lieber, “Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes,” Science, vol. 272, pp. 523-526, 1996
    [14]. S. Frank, P. Poncharal, Z. L. Wang, and W. A. deHeer, ”Carbon nanotube quantum resistors,” Science, vol. 280, pp. 1744-1746, 1998.
    [15]Yoshinori Ando, Xinluo Zhao, Kaori Hirahara, Kazutomo Suenaga, ShunjiBandow, Sumio Iijima,”Mass production of single-wall carbon nanotubes by the arc plasma jet method”, Chemical Physics Letters, Vol.323, p.580, 2000
    [16]Xiaolei Liu, Chenglung Lee, Song Han, Chao Li, Chongwu Zhou,”Carbon Nanotubes: Synthesis, Devices, and Integrated Systems”, Molecular Nanoelectronics, American Scientific Publishers, p. 283, 2003
    [17]Teri Wang Odom, Jin-Lin Huang, Philip Kim and Charles M. Liebe,”Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature, Vol.391, p. 62, 1991
    [18] F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, W.Honlein,” Carbon nanotubes in interconnect applications,” Microelectronic Engineering,vol. 64, pp. 399-408, 2002
    [19] S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris, T. J. Watson,” Carbon Nanotubes as Schottky Barrier Transistors”, Phys. Rev. Lett. 89, p. 106801, 2002
    [20] Yu-Ming Lin, Joerg Appenzeller, and Phaedon Avouris”, Novel Carbon Nanotube FET Design with Tunable Polarity”, IEEE IEDM 04, p. 687, 2004
    [21] M. H. Yang, K. B. K. Teo,a_ and W. I. Milne,” Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts” , APL 87, p. 253116, 2005
    [22]Joerg Appenzeller, Senior Member, IEEE, Yu-Ming Lin “Comparing Carbon Nanotube Transistors—The Ideal Choice: A Novel Tunneling Device Design” Electron Device Letter, VOL. 52, p. 2568, 2005
    [23] Jeng-Hua Wei, Hung-Hsiang Wang, Hsin-Hui Chen, Ming-Jiunn Lai, Ming-Jer Kao, and Ming-Jinn Tsai“A Novel Short–Gate Carbon Nanotube Thin Film Transistors”, IEEE, p. 42, 2003
    [24]J. Tersoff,”Contact resistance of carbon nanotubes”, Applied Physics Letters, Vol.74, No.15, p.2122-2124, 1999
    [25]Ali Javey, Jing Guo, Qian Wang, Mark Lundstrom, Hongjie Dai,”Ballistic carbon nanotube field-effect transistors”, Nature, Vol.424, p.654-656, 2003
    [26]Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima,” Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods,” Science, Vol.285, p.1719-1722, 1999
    [27]Jeong-O Lee, ”Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method” Applied Physics Letters, vol. 33, p.1953-1956, 2000
    [28] Yu-Ming Lin Joerg Appenzeller, Joachim Knoch, and Phaedon Avouris, ” High-Performance Carbon Nanotube Field-Effect Transistor With Tunable Polarities” IEEE Transactions On Nanotechnology, Vol. 4, No. 5, p. 481, 2005
    [29] Siyuranga O. Koswatta, Dmitri E. Nikonov, and Mark S.Lundstrom ,
    ” Computational Study of Carbon Nanotube p-i-n Tunnel FETs”, IEEE IEDM, p. 518, 2005
    [30] J. Knoch and J. Appenzellert ,” A novel concept for field-effect transistors - the tunneling carbon nanotube FET”, IEEE DRC, p. 153, 2005
    [31] Arijit Raychowdhury, “Carbon Nanotube Field-Effect Transistors for
    High-Performance Digital Circuits—DC Analysis and Modeling Toward Optimum Transistor Structure “, IEEE TED, Vol. 53, P2711, 2006
    [32] P. G. Collins, et al., “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown”, Science 292, p. 706, 2001
    [33] P. G. Collins, et al,” Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes”, Phys. Rev. Lett. 86, p. 3128, 2001
    [34] Chan-Ching Lin ”旋塗式奈米碳管場效電晶體製作與其電特性量測”,國立清華大學工程與系統科學系,2006

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE