研究生: |
陳煜仁 |
---|---|
論文名稱: |
以溶膠凝膠法製備含二維發色團之非線性光學材料及其電光特性研究 Electro-optical Research of NLO Material with Reactive 2D Chromophore Prepared by Sol-Gel |
指導教授: | 薛敬和 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 非線性光學 、溶膠/凝膠 、二氧化矽高分子網狀結構 、二維發色團 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以二維發色團9-Hexyl-3,6- di(2’-(6-hydroxyhexyl) sulfonylphenyl)-1’-ethenyl)-9H-carbazole (Cz2PhSO2OH)及一維發色團4-N,N-Bis(2-hydroxyethylene) amine -4’- nitroazobenzene (DR19) 進行反應型溶凝膠反應,比較維度對非線性光學穩定性的影響。並以二維發色團9-Hexyl-3,6-di(2-(6-hexyl) sulfonyl phenyl)-1’-ethenyl) -9H– carbazole (Cz2PhSO26C)與Cz2PhSO2OH比較賓主型及反應型對二維發色團在無機基材中穩定性的影響。實驗結果證實反應型二維發色團溶/凝膠系統於二氧化矽高分子網狀結構的補強下,時間及動態熱穩定性有大幅提升的現象,於100℃下無SHG訊號衰退。並透過固態矽譜得知,在二維反應型溶/凝膠系統中,有效轉移溫度(T0)會隨溫度及時間的增加而提升,然而,二階諧波係數(d33)卻有一最適值;另外,經由極化條件的控制,使二維及一維發色團在相同交聯程度條件下進行反應,結果顯示二維反應型溶/凝膠系統的動態熱穩定性(T0=110℃)明顯較一維反應型溶/凝膠系統(T0=80℃)高。而且,此兩系統在各自的有效轉移溫度下觀察其隨時間變化的鬆弛行為,二維系統維持的有效二階諧波係數(65%)較一維系統(30%)的多;再者,二維賓主型溶/凝膠系統在極化過程中會發生昇華現象,這是由於發色團與基材無化學鍵結作用力。
Two dimensional (2D) chromophore, 9-Hexyl-3,6-di (2’-(6-hydroxy hexyl)sulfonylphenyl)-1’-ethenyl)-9H-carbazole(Cz2PhSO2OH), and one dimensional (1D) chromophore 4-N,N-Bis(2- hydroxy ethylene) amine-4’- nitroazobenzene (DR19) with two reactive site proceeded sol-gel process were studied to compare the effects between dimension of chromophore and nonlinear optical (NLO)stability. Hybrid NLO film with another 2D chromophore,9-Hexyl-3,6-di(2’-(6-hexyl)sulfonylphenyl)-1’-ethenyl) -9H– carbazole (Cz2PhSO26C) ,was studied to compare the influence between physical and chemical bonding. The results show that due to the reinforcement of SiO2 polymeric structure , hybrid NLO films with covalent-bonded 2D chromophore were highly improved in temporal and thermal dynamic stability. There is no decay in second harmonic coefficient (d33) at 100℃ for 200 hr. Effective transition temperature (T0) was raised with the enhancement of temperature and time by means of increasing degree of cross-linking , though d33 owns an optimal value. Moreover, by controlling the poling condition, the degree of cross-linking of SiO2 matrix with 2D and 1D chromophore is identical. As for thermal dynamic stability, NLO films with 2D chromophore (T0 = 110℃) are obviously better than with 1D chromophore (T0 = 80℃). As for temporal stability, effective second order harmonic coefficient (deff) of NLO film with 2D chromophore (65%) is better than with 1D chromophore (30%) under individual effective transition Temperature. For hybrid NLO film, the 2D chromophore would be sublimed during poling process since no chemical bondings between chromophore and matrix.
(a)D. H. Choi, J. H. Park,T. H. Rhee, N. Kim, S.D. Lee, Chem. Mater. 1998, 10, 705 (b)W. J. Kuo1, M.C. Chang, T.Y. Juang, C.P. Chen,C.T. Chen, H. L. Chang , R. J. Jeng,Polym. Adv. Technol. 2005; 16: 515 (c)Y .C., G. Qian, L. Chen, Z. Wang, J. Gao, M. Wang,J. Phys. Chem. B, 2006, 110, 4105 (d)L. Chen, G. Qian,Y. Cui, X. Jin, Z. Wang, M. Wang,, J. Phys. Chem. B 2006, 110, 19176
R. S. Finn, J. F. Ward, J. Chem. Phys. 1974, 60, 454.
P. D. Southgate, Appl. Phys. Lett. 1976, 28, 250.
A. Dulcic, and C. Sauteret, J. Chem. Phys. 1978, 25, 402.
J. L. Oudar, J. Chem. Phys. 1977, 67, 446
J. L. Oudar, D. S. Chemla, Chem. Phys, 1977, 66, 2664
J. F. Ward, I. J. Bigio, Phys. Rev. 1975, A 11, 60.(b) A. Duclic, C. Flytzanis, C. L.
Tang, D. Pepin, M. Fitzon, Y. Hoppiliard, J. Chem. Phys, 1981, 74, 1559 (c) J.
Wang, M. Lu, Y. Pan, Z. Peng, J. Org.Chem. 2002, 67, 7781
S. Ohnishi, F. L. Gu, K. Naka, A. Imamura, B. Kirtman, Y. Aoki, J.Phys. Chem. A.
2004, 108, 8478
J. D. Morley, V. J. Docherty, and D. Pugh, J. Chem. Soc. Perkin.Trans.1987, 2, 1357
G. Berkovic, Y. R. Shen, M. Schadt, Mol. Cryst. Liq. Cryst. B 1987, 150, 607.
A.Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, S. R. Marder, K.
Staub, G. Levinna, R. j. Twieg, J. Appl. Phys. 2003, 94, 756
(a) P. A. Sullivan, S. Bhattacharjee, B. E. Eichinger, K. Firestone, B. H. Robinson,
L. R. Dalton, SPIE Proc. 2004, 5351, 253. (b) A. Qin, Z. Yang, F. Bai, C. J. Ye,
Polym. Sci., Part A 2003, 41, 2846. (c) H. Kang, S. Li, P. Wang, W. Wu, C. Ye,
Synth. Met. 2001, 121, 1469. (d) P. Wang, P. Zhu, W. Wu, H. Kang, C. Ye, Phys. Chem. 1999, 1, 3519.
(a) M. Yang, B. J. Champagne, Phys. Chem. A 2003, 107, 3942 (b) V. Ostroverkhov, R. G. Petschek, K. D. Singer, R. J. Twieg, Chem.Phys. Lett. 2001, 340, 109. (c) S. Van Elshocht, T. Verbiest, M. Kauranen, L. Ma, H. Cheng, K. Musick, L. Pu, Persoons, A. Chem. Phys. Lett. 1999, 309, 315. (d) M. S. Wong, J. F. Nicoud, C. Runser, A. Fort, M. Barzoukas, E. Marchal, Chem. Phys. Lett. 1996, 253, 141.(e) H. C. Tsai , W. J. Kuo, G. H. Hsiue, Macromol. Rapid Commun. 2005, 26, 986(f) W. J. Kuo, G. H. Hsiue, R. J. Jeng, Macromol. Rapid Commun. 2001, 22,601
(a) Traber, B.; Wolff, J. J.; Rominger, F.; Oeser, T.; Gleiter, R.; Goebel, M.; Wortmann, R. Chem. Eur. J. 2004, 10, 1227. (b) Wolff, J J.; Segler, F.; Matschiner, R.; Wortmann, R. Angew. Chem., Int. Ed. 2000, 39, 1436.
(a) W. J. Kuo, G. H. Hsiue, R. J. Jeng, Macromolecules 2001, 34, 2373. (b) H. Yamamoto, S. Katogi, T. Watanabe, , H. S. SatoMiyata, T. Hosomi, Appl. Phys. Lett. 1992, 60, 935
H. Kang, P. Zhu, Y. Yang, A.Facchetti, J. M .Tobin, JACS communications,
2004,126,15974
Z. Yang, A. Qin , S. Zhang , C. Ye, European Polymer Journal, 2004 ,40,1981
J. Y. Lee and W. T. Jung, B. K .Rhee, Journal of Nonlinear Optical Physics & Materials, 2005, 14, 341
I. Asselberghs, G. Hennrich, K. Clays, J. Phys. Chem. Part A ,2006, 110, 6271
G. de la Torre, P. Va´zquez, F. A. Lo´pez, T. Torres, Chem. Rev. 2004, 104, 3723
J. Zyss, J. L. Oudar, Phys. Rev. A, 1982, 26, 2016
M.J.S. Dewar, E. G. Zoevisch, E. F. Healy, J. P. Stewart,J. Am. Chem. Soc.,1985,107, 3092
H.Yamamoto,S. Katogi, T. Watanabe, H. Sato, and S. Miyata, Appl. Phys. Lett., 1992,8,60.
H. Yamamoto, S. Katogi, T. Watanabe, H.Sato, S. Miyata, T.Hosomi, Appl. Phys. Lett. 1992, 60, 8, 935.
J. D. Stenger-Smith, P. Zarras, R. A. Hollins, A. P. Chafin, L. H. Merwin, R. Yee, G. A. Lindsay, W. N. Herman, R. F. Gratz, E. G. Nickel, J. Polym. Sci., Part A: Polym. Chem. 1993, 2824.
Y. Zhang, L. Wang, T. Wada, H. Sasabe, Macromolecules 1996, 29, 1569
(a) W. J. Kuo, G. H. Hsiue, R. J. Jeng, J. Mater. Chem.
2002, 12(4), 868 (b)W. J. Kuo, G. H. Hsiue, R. J. Jeng, Macromol.
Chem. Phys. 2001, 202(9), 1782.
(a) V. Ostroverkhov, Rg Petschek, K. D. Singer, R. J. Twieg, Chemical Phys. Lett. , 2001,340,109 (b) H. Ma, A. K. Y.Jen, L. R. Dalton, Advan. Mater., 2002,14, 1339
M. Yang , B. Champagne, J. Phys. Chem. A ,2003, 107, 3942
A. Qin, F. Bai, C. Ye, Journal of Molecular Structure (Theochem) ,2003 ,631, 79
M. A. Hubbard, N. Minami, C. Ye, T. J. Marks, J. Yang, G. K. Wong, Proc.
SPIE ,1988, 971, 136.
D. R. Robello, C. S. Wiland, M. Scozzafava, A. Ullman, D. J. Williams, In
Materials for Nonlinear Optics. Chemical Persprctiues; ACS Symposium Series
455; Marder, S. R., Sohn, J. E.. Stucky, G. D., Eds.; American Chemical Society:
Washington, DC, 1991: p 279.
陳鴻仁╱光連雙月刊,第38 期╱2002
(a)C.K. Brinker, G. W. Scherer, “Sol-Gel science”, Acadamic press,2,1990(b)蔡奇哲,”以溶膠凝膠法製備低介電PTFE-SiO2基板材料性質之研究”,國立清華大學化學工程系碩士論文民國92年
S. Gerhard Chem. Mater. 2001, 13, 3422
A. L. Douglas, J. S. Kenneth, Chem. Rev. 1995,95.1431
F. Chaumel, H. Jiang, A. Kakkar ,Chem. Mater.2001, 13, 3389
P. Griesmar, C. Sanchez G. Pucetti, I. Ledoux, J. Zyss, Molec. Eng,1991, 1, 205
E. Toussaere, J. Zyss, P. Griesmar, C Sanchez, nonlinear optics, 1991,1,349
R. J. Jeng, Y. M. Chen, A. K. Jain, S. K. Tripathy, J. Kumar,Opt. Commun,
1992,89,212
J. Kim, J. L. Plawski, E. Van Wagenen, G. M. Korenowski, Chem. Mater, 1993,
5,1118
R. J. Jeng, Y. M. Chen, A. K. Jain, J. Kumar, and S. K. Tripathy, Chem. Mater.
1992,4,972
H. Hayashi, H. Nakayama, O. Sugihara, N. Okamoto, OpticLetters,1995, 22, 2264
H. Zhang, D. Lu, and M. Fallahi, Appl. Phys. Lett., 2004 , 84,1064
H. X. Thang, D. Lu, N. Peyghambarian, J. D. Luo, B. Q. Chen, A. K. Y. Jen ,M.
Fallahi, optics letter, 2005, 30, 117
H. K. Kim, S. J. Kang, S. K. Choi, Y.H. Min, C. S. Yoon, Chem. Mater, 1999,11,
779
a) M. Chen, L. Yu, L. R. Dalton, Y. Shi, W. H. Steier, Macromolecules 1991, 24, 5421. (b) M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, W. H. Steier, Macromolecules 1992,25, 4032. (c) S. S. H Mao, Y. Ra, L. Guo, C. Zhang, L. R. Dalton, Chem. Mater. 1998, 10, 146.(d) A. W. Harper, S. S. H. Mao, Y. Ra, C. Zhang, J. Zhu, L. R. Dalton, Chem. Mater. 1999, 11, 2886
C. Mutter , T.N.M. Bernards, M. P. J. Peeters, J. H. Lammers, M. R. BoÈhmer,
Thin Solid Films 1999,351, 95
(a)R. H. Glaser, G. L. Wilkes, C. E. J. Bronnimann, Non-Cryst.Solids 1989, 113, 73. (b) E. Lippmaa, M. Magi, A. Samoson, G. Engelhardt, A. R. Grimmer, J. Am. Chem. Soc. 1980, 102, 4889. (c) G. Engelhardt, H. Jancke, E. Lippmaa, A.Samoson, J. Organomet. Chem. 1981, 210, 295. (d) E. Lippmaa, A. Samoson, G. Engelhardt, A. R. Grimmer, J. Phys. Chem. 1984, 88, 1518.
J. Kim, J.L. Plawsky, Elizabeth Van Wagenen, andGerald M. Korenowski, Chem.
Mater. 1993,5, 111
B. Lebeau,,S. Brasselet, J. Zyss, C. Sanchez,Chem. Mater. 1997, 9,1012
H. Ma, B. chen, T.Sassa, L.R. Dalton,A.K.Y. Jen, J.Am. Chem. Soc. 2001,123,986
(a) Z. Yang, C. Xu, B. Wu, L. R Dalton, S. Kalluri, W. H. Steier, Y. Shi, J. H. Bechtel, Chem. Mater. 1994, 6, 1899.(b) D. Reihl, F. Chaput, Y. Levy, J. P. Boilot, F. Kajzar, P. A. Chollet, Chem. Phys. Lett. 1995, 245, 36.(c) S. Kalluri, Y. Shi, W. Steier, Z. Yang, C. Xu, B. Wu, L. R.Dalton, Appl. Phys. Lett. 1994, 65 (21), 2651.
C.Zhang, C. Wang, J. Yang, L. R.Dalton,Macromolecules,2001,34,235
J. L. Oudar, J. Chim. Phys. 1977,67,446
(a) M. Stahelin, C. Walsh, D. Burland, R. Miller, R. Twieg, and W.Volksen, J. Appl. Phys. 1993,73,8471 .(b)M. Stahelin, D. Burland, M. Ebert, R. Miller, B. Smith, R. Twieg,W. Volksen, and C. Walsh, Appl. Phys. Lett. 1992,61,1626 (c)S. Ermer, J. Valley, R. Lytel, G. Lipscomb, T. Van Eck, and D. Girton, Appl. Phys. Lett. 1992,61,2272. (d)W. J. Kuo, G. H. Hsiue, and R. J. Jeng, Macromolecules 2001,34,2373.