研究生: |
吳聖凱 Wu, Sheng-Kai |
---|---|
論文名稱: |
具可變壓直流鏈及容錯能力之電動車永磁同步馬達驅動系統 AN ELECTRIC VEHICLE PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVE WITH VARIED-VOLTAGE DC-LINK AND FAULT-TOLERANT CAPABILITIES |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
陳景然
Chen, Ching-Jan 劉添華 Liu, Tian-Hua |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 193 |
中文關鍵詞: | 電動車 、內置磁石式永磁同步馬達 、無位置感測 、蓄電池 、超電容 、介面轉換器 、CLLC諧振轉換器 、隔離轉換器 、切換式整流器 、再生煞車 、電網至車輛 、車輛至家庭 、車輛至電網 、能源收集 |
外文關鍵詞: | EV, IPMSM, sensorless, battery, supercapacitor, interface converter, CLLC resonant converter, isolated converter, switch-mode rectifier, regenerative braking, G2V, V2H, V2G, energy harvesting |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發一具可變壓直流鏈及容錯能力之電動車永磁同步馬達驅動系統,於閒置模式中,其可執行能源收集及聯網操作。馬達驅動系統之直流鏈電壓,由蓄電池經雙向全橋式直流/直流介面轉換器供給,其可低於或高於電池電壓,藉以提高能量轉換效率。而全橋式轉換器亦與一升/降壓轉換器並聯,使其具容錯能力,當馬達於直流鏈電壓高於電池電壓之速度區間時,可自動以兩臂形成交錯式介面轉換器。另外,超電容經單臂升/降壓轉換器介接至馬達驅動器之直流鏈,其可協助電池於馬達急加速時提供能量,並儲存再生煞車之回送能量。
首先,建構具換向功能及動態控制之標準電動車內置磁石式永磁同步馬達驅動系統,提出許多量測結果用於實驗性能評估。爾後,開發一可變換頻率之高頻注入無位置感測電動車內置磁石式永磁同步馬達驅動系統,並與標準驅動器進行比較評估。
在電動車閒置下,藉外加三相變頻器及雙向CLLC諧振直流/直流轉換器,所開發之電動車馬達驅動系統可施行電網至車輛及車輛至電網之操作。於電網至車輛模式中,三相變頻器操作成切換式整流器,由電網對車載電池進行充電。至於車輛至電網模式,電池可藉相同之變頻器,供給當地負載及預設功率至電網。
最後,配置兩種能源收集系統於所研製之電動車驅動器。車頂之太陽光伏可於任何情況下,通過一升壓直流/直流轉換器直接對電池充電。而於閒置下,透過適當建構之集成架構,亦可藉屋頂之太陽光伏、可取用之直流電源或三相/單相交流電源,對車載電池進行輔助充電。
This thesis develops an electric vehicle (EV) interior permanent-magnet synchronous motor (IPMSM) drive with varied-voltage DC-link and fault-tolerant capability. In idle condition, the developed EV drive can be arranged to conduct energy harvesting and grid- connected operations. The motor drive is powered from the battery via an H-bridge bidirectional DC/DC converter. The DC-link voltage can be lower or higher than battery voltage to improve the energy conversion efficiency. The H-bridge converter is further paralleled by a one-leg boost-buck converter to possess fault-tolerant capability. Within the speed range with DC-link voltage being higher than battery voltage, the interleaved interface converter with two cells is automatically formed. In addition, a supercapacitor (SC) is interfaced to the motor drive DC-link through a one-leg boost-buck converter. It can discharge energy to assist the motor rapid acceleration and store the recovered regenerative braking energy.
The commutation and dynamic controls for a standard EV IPMSM drive are made. A lot of measured results are presented for experimental performance evaluation. Then a high-frequency injection (HFI) position sensorless controlled EV IPMSM drive with changed injection frequencies is developed. Its comparative evaluation to the standard drive is also conducted.
In idle condition, the grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operations of the developed EV motor drive can be performed using the externally added three-phase inverter and bidirectional CLLC resonant DC/DC converter. In G2V operation, the three-phase inverter is operated as a switch-mode rectifier (SMR) to perform the on-board battery charging from the utility grid. As to the V2G operation, the battery can power the local loads and discharge the preset power back to the grid via the same inverter.
Finally, two energy harvesting systems are equipped in the developed EV drive. The EV roof photovoltaic (PV) can directly charge the battery under any conditions via a boost DC/DC converter. In idle condition, through the properly constructed integrated schematic, the house roof PV, the available DC or the three-phase/single-phase AC source can conduct the on-board battery auxiliary charging.
A. Electric Vehicles
[1] C. C. Chan, A. Bouscayrol, and K. Chen “Electric, hybrid, and fuel-cell vehicles: architectures and modeling,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 589-598, 2010.
[2] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
[3] A. M. Lulhe and T. N. Date, “A technology review paper for drives used in electrical vehicle (EV) & hybrid electrical vehicles (HEV),” in Proc. IEEE lCCICCT, 2015.
[4] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
[5] T. Alagarsamy and B. Moulik, “A review on optimal design of hybrid electric vehicles and electric vehicles,” in Proc. IEEE I2CT, 2018, pp. 1-5.
[6] M. Arata, Y. Kurihara, D. Misu, and M. Matsubara, “EV and HEV motor development in TOSHIBA,” in Proc. IEEE IPEC, 2014, pp. 1874-1879.
[7] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transp. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
[8] A. Siadatan, M. K. Adab, and H. Kashian, “Compare motors of Toyota Prius and synchronous reluctance for using in electric vehicle and hybrid electric vehicle,” in Proc. IEEE EPEC, 2017, pp. 1-6.
[9] Shumei Cui, Shouliang Han, and C. C. Chan, “Overview of multi-machine drive systems for electric and hybrid electric vehicles,” in Proc. IEEE ITEC Asia-Pacific, 2014, pp. 1-6.
[10] G. Wu, K. Boriboonsomsin, and M. J. Barth, “Development and evaluation of an intelligent energy-management strategy for plug-in hybrid electric vehicles,” IEEE Trans. Syst., vol. 15, no. 3, pp. 1091-1100, 2014.
B. Permanent-Magnet Synchronous Motor Drives
[11] J. Y. Lee, S. H. Lee, G. H. Lee, J. P. Hong, and J. Hur, “Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1303-1306, 2006.
[12] M. S. Toulabi, J. Salmon, and A. M. Knight, “Design, control, and experimental test of an open-winding IPM synchronous motor,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2760-2769, 2016.
[13] V. Ghorbanian and D. A. Lowther, “Magnetic and electrical design challenges of inverter-fed permanent magnet synchronous motors,” IEEE Trans. Magn., vol. 53, no. 6, 2017.
[14] M. C. Chou, C. M. Liaw, S. B. Chien, F. H. Shien, J. R. Tsai, and H. C. Chang, “Robust current and torque controls for PMSM driven satellite reaction wheel,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 1, pp. 58-74, 2011.
[15] S. Kar and S. K. Mishra, “Direct torque control of permanent magnet synchronous motor drive with a sensorless initial rotor position estimation scheme,” in Proc. IEEE APCET, 2012, pp. 1-6.
[16] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Trans. Power. Electron., vol. 31, no. 5, pp. 3728-3737, 2016.
[17] N. Prabhakar and M. K. Mishra, “Dynamic hysteresis current control to minimize switching for three-phase four-leg VSI topology to compensate nonlinear load,” IEEE Trans. Power Electron., vol. 25, no. 8, pp. 1935-1942, 2010.
[18] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for a PMSM driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, October 2011.
[19] T. Türker, U. Buyukkeles, and A. F. Bakan, “A robust predictive current controller for PMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3906-3914, 2016.
[20] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
[21] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007-1015, 2013.
[22] T. Sun, J. Wang, A. Griffo, and B. Sen, “Active thermal management for interior permanent magnet synchronous machine (IPMSM) drives based on model predictive control,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4506-4514, 2018.
[23] J. W. Jung, V. Q. Leu, T. D. Do, E. K. Kim, and H. H. Choi, “Adaptive PID speed controller design for permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 900-908, 2015.
[24] S. Chaithongsuk, B. N. Mobarakeh, J. P. Caron, N. Takorabet, and F. M. Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
[25] S. Bolognani, S. Calligaro, and R. Petrella, ‘‘Adaptive flux-weakening controller for interior permanent magnet synchronous motor drives,’’ IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 236-248, 2014.
[26] T. A. Burress, “Benchmarking EV and HEV technologies,” Technical Report ORNL, 2015.
[27] C. M. Liaw, K. W. Hu, Y. S. Lin, and T. H. Yeh, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4493-4504, 2016.
[28] W. F. Cheng, “Development of an electric vehicle position sensorless PMSM drive with G2V/V2H/V2G and energy harvesting capabilities,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2015.
C. Hybrid Energy Storage System in EVs
[29] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012.
[30] Y. Zhang, X. F. Cheng, C. Yin, and S. Cheng, “A soft-switching bidirectional DC–DC converter for the battery super-capacitor hybrid energy storage system,” IEEE Trans. Ind. Electron., vol. 65, no.10, pp. 7856-7865, 2018.
[31] F. Ju, Q. Zhang, W. Deng, and J. Li, “Review of structures and control of battery- supercapacitor hybrid energy storage system for electric vehicles,’’ in Proc. IEEE CASE, 2014.
[32] J. Shen and A. Khaligh, “A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 223-231, 2015.
[33] F. Akar, Y. Tavlasoglu, and B. Vural, “An energy management strategy for a concept battery/ultracapacitor electric vehicle with improved battery life,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 191-200, 2017.
[34] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor-based regenerative controlled electric drives with power-smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511-4522, 2012.
[35] E. Chemali, M. Preindl, P. Malysz, and A. Emadi, “Electrochemical and electrostatic energy storage and management systems for electric drive vehicles: state-of-the-art review and future trends,” IEEE Jour. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 1117-1134, 2016.
[36] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,’’ IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
[37] Y. Parvini, J. B. Siegel, A. G. Stefanopoulou, and A. Vahidi, “Supercapacitor electrical and thermal modeling, identification, and validation for a wide range of temperature and power applications,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1574-1585, 2016.
[38] K. Itani, A. D. Bernardinis, Z. Khatir, A. Jammal, and M. Oueidat, “Regenerative Braking modeling, control, and simulation of a hybrid energy storage system for an electric vehicle in extreme conditions,” IEEE Trans. Transport. Electrific., vol. 2, no. 4, pp. 465-479, 2016.
[39] M. O. Badawy, T. Husain, Y. Sozer, and J. A. De Abreu-Garcia, “Integrated control of an IPM motor drive and a novel hybrid energy storage system for electric vehicles,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5810-5819, 2017.
[40] S. Barcellona, D. D. Simone, and L. Piegari, “Control strategy to improve EV range by exploiting hybrid storage units,” IET Elect. Systems Trans., vol. 9, no. 4, pp. 237-243, 2019.
[41] Y. Fukushima, M. Fukuma, M. Hirose, K. I. Sugiyama, M. Kawami, K. Yoshino, S. Kishidaand, and S. S. Lee, “Application of electric double layer capacitor and water level sensor to rice field monitoring system,’’ in Proc. IEEE SENSORS, 2018, pp. 1-4.
[42] C. Zheng, W. Li, and Q. Liang, “An energy management strategy of hybrid energy storage systems for electric vehicle applications,’’ IEEE Trans. Sustain. Energy, vol. 9, no. 4, pp. 1880-1888, 2018.
[43] V. Alimisis and N. D. Hatziargyriou, “Evaluation of a hybrid power plant comprising used EV-batteries to complement wind power,’’ IEEE Trans. Sustain. Energy, vol. 4, no. 2, pp. 286-293, 2012.
[44] H. H. Eldeeb, A. T. Elsayed, C. R. Lashway, and O. Mohammed, “Hybrid energy storage sizing and power splitting optimization for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2252-2262, 2019.
[45] P. M. Diaz and H. J. El-Khozondar, “Electrical energy storage technologies and the application potential in power system operation: a mini review,’’ in Proc. IEEE 7th PICECE, 2019, pp. 1-9.
D. Photovoltaic in EVs
[46] J. I. Cairo and A. Sumper, “Requirements for EV charge stations with photovoltaic generation and storage,” in Proc. IEEE ISGT, 2012, pp. 1-6.
[47] K. Chaudhari, A. Ukil, K. N. Kumar, U. Manandhar, and S. K. Kollimalla, “Hybrid optimization for economic deployment of ESS in PV-integrated EV charging stations,” IEEE Trans. Ind. Inform., vol. 14, no. 1, pp. 106-116, 2017.
[48] S. A. Singh and S. S. Williamson, “Comprehensive review of PV/EV/grid integration power electronic converter topologies for DC charging applications,” in Proc. IEEE ITEC, 2014, pp. 1-5.
[49] M. Abdelhamid, R. Singh, and I. Haque, “Role of PV generated DC power in transport sector: case study of plug-in EV,” in Proc. IEEE ICDCM, 2015, pp. 299-304.
[50] G. Carli and S. S. Williamson, “Technical considerations on power conversion for electric and plug-in hybrid electric vehicle battery charging in photovoltaic installations,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5784-5792, 2013.
E. Position Sensorless Control Methods
[51] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance improvement of Sensorless IPMSM drives in a low-speed region using online parameter identification,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 798-804, 2011.
[52] M. A. Hamida, J. D. Leon, A. Glumineau, and R. Boisliveau, “An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 739-748, 2013.
[53] T. C. Lin, Z. Q. Zhu, K. Liu, and J. M. Liu, “Improved sensorless control of switched-flux permanent-magnet synchronous machines based on different winding configurations,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 123-132, 2015.
[54] J. H. Jang, J. I. Ha, M. Ohto, K. Ide, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[55] H. W. De Kock, M. J. Kamper, and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009.
[56] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
[57] G. Feng, C. Lai, K. L. V. Iyer, and N. C. Kar, “Improved high-frequency voltage injection based permanent magnet temperature estimation for PMSM condition monitoring for EV applications,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 216-225, 2017.
[58] P. L. Xu and Z. Q. Zhu, “Carrier signal injection-based sensorless control for permanent- magnet synchronous machine drives considering machine parameter asymmetry,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2813-2824, 2015.
[59] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511.
[60] D. Kim, Y. C. Kwon, S. K. Sul, J. H. Kim, and R. S. Yu, “Suppression of injection voltage disturbance for high-frequency square-wave injection sensorless drive with regulation of induced high-frequency current ripple,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 302-312, 2016.
[61] S. C. Yang, S. M. Yang, and J. H. Hu, “Design consideration on the square-wave voltage injection for sensorless drive of interior permanent-magnet machines,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 159-168, 2016.
[62] S. Po-ngam and S. Sangwongwanich, “Stability and dynamic performance improvement of adaptive full-order observers for sensorless PMSM drive,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 588-600, 2012.
[63] Y. Park and S. K. Sul, “Sensorless control method for PMSM based on frequency-adaptive disturbance observer,” IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 143-151, 2014.
[64] R. W. Hejny and R. D. Lorenz, “Evaluating the practical low-speed limits for back-EMF tracking-based sensorless speed control using drive stiffness as a key metric,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1337-1343, 2011.
[65] A. Sarikhani and O. A. Mohammed, “Sensorless control of PM synchronous machines by physics-based EMF observer,” IEEE Trans. Energy Convers., vol. 27, no. 4, pp. 1009-1017, 2012.
[66] R. Antonello, L. Ortombina, F. Tinazzi, and M. Zigliotto, “Enhanced low-speed operations for sensorless anisotropic PM synchronous motor drives by a modified back-EMF observer,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3069-3076, 2018.
[67] G. Foo and M. F. Rahman, “Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1270-1278, 2010.
[68] I. Hideaki, I. Masanobu, K. Takeshi, and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
[69] S. Bolognani, S. Calligaro, R. Petrella, and M. Tursini, “Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-104, 2011.
[70] W. Zine, L. Idkhajine, E. Monmasson, Z. Makni, P. A. Chauvenet, B. Condamin, and A. Bruyere, “Optimisation of HF signal injection parameters for EV applications based on sensorless IPMSM drives,” IET Elect. Power Appl., vol. 12, no. 3, pp. 347-356, 2018.
F. PWM Inverters
[71] S. J. Chiang and C. M. Liaw “A single-phase three-wire transformerless inverter,” IEE Proc. Electron. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
[72] E. Koutroulis and F. Blaabjerg, “Methodology for the optimal design of transformerless grid-connected PV inverters,” IET Power Electron., vol. 5, no .8, pp. 1491-1499, 2012.
[73] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013.
[74] V. Michal, “Three-level PWM floating H-bridge sinewave power inverter for high-voltage and high-efficiency applications,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4065-4074, 2015.
[75] T. K. T. Nguyen, N. V. Nguyen, and N. R. Prasad, “Novel eliminated common-mode voltage PWM sequences and an online algorithm to reduce current ripple for a three-level inverter,” IEEE Trans. Power Electron., vol. 32, no. 10, pp. 7482-7493, 2016.
G. Grid-Connected Operations
[76] T. S. Ustun, C. R. Ozansoy, and A. Zayegh, “Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, 2013.
[77] F. Berthold, A. Ravey, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “Design and development of a smart control strategy for plug-in hybrid vehicles including vehicle-to-home functionality,” IEEE Trans. Transport. Electrific., vol. 1, no. 2, pp. 168-177, 2015.
[78] M. C. Kisacikoglu, M. Kesler, and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767-775, 2015.
[79] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, 2016.
[80] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016.
[81] J. Wang, J. D. Yan, L. Jiang, and J. Zou, “Delay-dependent stability of single-loop controlled grid-connected inverters with LCL filters,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 743-757, 2015.
[82] M. A. Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver, and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid-system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 157-171, 2018.
[83] M. Kwon and S. Choi, “An electrolytic capacitorless bidirectional EV charger for V2G and V2H applications,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6792-6799, 2016.
H. Front-end Converters and Switch-mode Rectifiers
[84] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single-phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[85] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[86] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, 2013.
[87] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems-part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[88] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, 2013.
[89] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
[90] S. Sathyan, H. M. Suryawanshi, A. B. Shitole, M. S. Ballal, and V. B. Borghate, “Soft- switched interleaved DC/DC converter as front-end of multi-inverter structure for micro grid applications,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7645-7655, 2017.
[91] S. Kim and F. S. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, 2015.
[92] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
[93] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015.
[94] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, 2016.
[95] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard charger,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, 2017.
[96] J. Ye, C. Shi and A. Khaligh, “Single-phase charging operation of a three-phase integrated onboard charger for electric vehicles,” in Proc. IEEE ITEC, 2018, pp. 681-686.
[97] S. Prakash, R. Kalpana, B. Singh, and G. Bhuvaneswari, “Design and implementation of sensorless voltage control of front-end rectifier for power quality improvement in telecom system,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2438-2448, 2018.
I. Isolated DC/DC converter
[98] L. Chen, L. Tarisciotti, A. Costabeber, F. Gao, P. Wheeler, and P. Zanchetta, “Advanced modulations for a current-fed isolated DC–DC converter with wide-voltage-operating ranges,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 7, no. 4, pp. 2540-2552, 2018.
[99] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2012.
[100] H. Wang and Z. Li, “A PWM LLC type resonant converter adapted to wide output range in PEV charging applications,” IEEE Trans. Power Electron., vol. 33, no. 5, pp. 3791-3801, 2018.
J. Others
[101] T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” 2009.
[102] “Digital signal controller TMS320F28335 data sheet,” Available: http://www.ti.com/lit/ds/ symlink/tms320f28335.pdf, 2016.
[103] B. R. Huang, “An electric vehicle motor drive with bidirectional grid-connected function using phase-shifted isolated converter,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2019.
[104] “Comparative characteristics of batteries,” Available: https://leadcrystalbatteries.com/lead- crystal-battery-performance, 2019.
[105] “Super-capacitor BMOD0006 E160 B02 data sheet,” Available: https://www.maxwell.com/ images/documents/160VModule_DS_3000246_6.pdf, 2019.
[106] “Amorphous metal c-core series datasheet,” Available: https://elnamagnetics.com/wp- content/uploads/catalogs/Metglas/powerlite.pdf, 2019.
[107] “Amorphous c-cores properties and application notes,” Available: https://www.sekels.de/ fileadmin/PDF/Deutsch/Presentation_amorphous_c_cores_design_notes_v3.pdf, 2019.
[108] “Types of Electric Vehicles,” Available: https://www.evgo.com/why-evs/types-of- electric- vehicles/.
[109] “What’s the Best Battery,” Available: https://himaxelectronics.com/whats-the-best-battery/, 2019.