簡易檢索 / 詳目顯示

研究生: 張淑雅
Shu-Ya Chang
論文名稱: 以無電鍍法研製銅內連線擋層Ni-W-P之研究
Electroless deposition of Ni-W-p film as diffusion barrier for Cu interconnect
指導教授: 萬其超
Chi-Chao Wan
王詠雲
Yung-Yun Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 82
中文關鍵詞: 擋層銅製程
外文關鍵詞: electroless, diffusion barrier
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以無電鍍法製備高熱穩定性及低電阻率之Ni-W-P薄膜,且藉著調整無電鍍槽之參數如:鍍槽溫度、[Na2WO4] 和pH,可對於鍍膜性質有良好之控制。所得薄膜組成Ni: 83–87 at.%, P:3-16 at.%, W:1-10 at.%.,電阻率為63-92 μΩ-cm,其電阻率相較於傳統所使用的擋層為低,因此不需銅晶種層而可以直接電鍍銅。此Ni-W-P薄膜經過400℃高溫熱處理後,無其他不穩定相產生,此外,無電鍍Ni-W-P薄膜之電阻率在經400 ℃之熱處理一小時後,仍維持良好的電性,所以Ni-W-P薄膜具有高熱穩定性的性質。另外,從SIMS的結果顯示,在400℃的高溫熱處理之後,銅擴散至基材之情形並不明顯,這說明Ni-W-P薄膜具備作為擋層的潛力。
    由於擋層之沈積在銅內連線製程是不可或缺的一環,因此研究擋層之沈積,也就是無電鍍基本反應,與擋層性質之間的關係亦成了關鍵。本研究另一目標著重在利用CV, UV和XPS等方法來尋找鎢與鎳的共沈積機制,由CV的結果鎢酸之添加無法改變CV之形狀,除了原有鎳及次磷酸根之氧化還原波峰外,無其他鎳鎢共沈積之波峰出現,而鎢酸的添加卻能加速還原與氧化反應速率。此外,藉著UV觀察並不能直接提供是否有Ni和W同時存在之錯和物形成之證據。最後,嘗試以XPS之表面分析而得知Ni-W-P薄膜中的鎢是以金屬態鎢和鎢酸根為主要存在形式。


    Our study is to develop a new diffusion barrier with low resistivity and high thermal stability via electroless deposition, and get a good control of Ni-W-P film composition by adjusting the bath condition and other parameters including bath temperature, [Na2WO4] and pH. The elemental composition of the deposited Ni-W-P films in this report has been determined to be Ni: 83–87 at.%, P:3-16 at.%, W:1-10 at.%. The resistivity of our Ni-W-P film can be as low as 63-92 μΩ-cm. Thus, copper could be directly deposited on this barrier layer and the copper seed layer is eliminated.
    No metastable phases are observed in the Ni-W-P coating after heat treatment at 400. We found that the electrical property of Ni-W-P film still remain good after 400℃ heat-treatment for at least 1 hr. From these results, the Ni-W-P films do possess sufficient thermal stability.
    Copper interconnection was directly carried on Ni-W-P film without other seed layer. From SIMS depth profile, no significant diffusion can be found in the sample at 400 ℃, implying that Ni-W-P film has a good capacity to prevent Cu and Si inter-diffusion.
    Conformal deposition of a barrier layer is a decisive step in producing deep submicron interconnects for high aspect ratio features. Therefore, the investigation of basic mechanism and processes involved in electroless barrier deposition is necessary. The goal of various investigations such as UV, CV and XPS is to study the species present in th electroless solution that could be potential reactants involving in the deposition mechanism. From CV results, the plot is similar to that obtained for the Ni-P system. Just as observed in the induced electrodeposition of W or Mo by transition metals, no separate peaks are present when tungsten is codeposited. No evidence of the formation of some complex containing Ni and W together could be found via UV measurements.The Ni-W-P film contains tungsten in a form of pure tungsten metal as well as tungstate, the latter being the predominant form.

    Table of Contents 摘要.......................................................................................................................Ⅰ Abstract…………………………………………………………………………Ⅱ Table of Contents……………………………………………………………….Ⅳ List of Tables……………………………………………………………………Ⅶ List of Figures…………………………………………………………………..Ⅷ Chapter1. Introduction………………………………………………………….1 1.1 Introduction…………………………………………………………………………..1 1.2 Copper metallization…………………………………………………………………2 1.3 Application of diffusion barriers in electronic devices……………………………… 2 1.4 Requirements of diffusion barriers………………………………………………….. 2 1.5 Types of diffusion barriers…………………………………………………………... 3 1.6 Barrier materials……………………………………………………………………...4 1.7 Barrier deposition technologies……………………………………………………... 5 Chapter2. Electroless Nickel-based barriers for copper interconnects…......10 2.1 Introduction…………………………………………………………………………10 2.2 Literature review……………………………………………………………………10 2.2.1 Electroless cobalt-based layers………………………………………………… 10 2.2.1.1 Co-W-P films……………………………………………………………………10 2.2.1.2 Co-Mo-P films…………………………………………………………………..12 2.2.2 Electroless nickel-based layers…………………………………………………...13 2.2.2.1 Ni-P films……………………………………………………………………….13 2.2.2.2 Ni-B and Ni-W-B films…………………………………………………………14 2.2.2.3 Ni-Mo-P films…………………………………………………………………..15 2.2.2.4 Ni-W-P films……………………………………………………………………16 2.2.2.4.1 Phase of binary Ni-W alloy system…………………………………………...16 2.2.2.4.2 Application and physical properties…………………………………………..16 2.2.2.4.3 Fabrication and composition………………………………………………….17 2.2.2.4.4 Mechanical property and corrosion resistance………………………………..17 2.2.2.4.5 Microstructure and thermal property…………………………………………18 2.2.2.4.6 Electrical property…………………………………………………………….18 2.2.2.4.7 Interfacial interaction between coopper/barrier………………………………19 2.2.2.4.8 Direct Cu deposition on seedless barrier……………………………………. 20 2.3 The objective of this research………………………………………………………21 2.4 Experimental………………………………………………………………………..26 2.4.1 Pretreatment before electroless deposition……………………………………….26 2.4.2 Electroless deposition of Ni-W-P film……………………………………………26 2.4.3 Electrodeposition of Cu film.…………………………………………………….26 2.4.4 Procedure of annealing…………………………………………………………....26 2.4.5 Characterization and measurement……………………………………………….27 2.4.5.1 Surface morphology and composition analysis………………………………... 27 2.4.5.2 Crystal structure identification………………………………………………… 27 2.4.5.3 Film thickness measurement……………………………………………………27 2.4.5.4 Electrical resistivity measurement……………………………………………...27 2.4.5.5 SIMS analysis…………………………………………………………………..28 2.5 Results and Discussions…………………………………………………………….32 2.5.1 Effects of deposited parameters in Ni-W-P film………………………………….32 2.5.1.1 Deposition rate and film composition…………………………………………. 32 2.5.1.1.1 [Na2WO4] effect………………………………………………………………32 2.5.1.1.2 pH effect………………………………………………………………………33 2.5.1.1.3 Bath temperature effect……………………………………………………….33 2.5.1.1.4 Deposition time……………………………………………………………….34 2.5.2 Microstructure and crystal structure……………………………………………... 34 2.5.3 Electrical property……………………………………………………………….. 35 2.5.4 Effect of heat-treatment on structure and sheet resistance……………………… 36 2.5.4.1 Phase identification of heat-treated Ni-W-P films…………………………….. 36 2.5.4.2 Sheet resistance of heat-treated Ni-W-P films………………………………… 37 2.5.5 Electroless Ni-W-P film as Diffusion barrier……………………………………..38 2.5.5.1 Phase formation of Cu/Ni-W-P/Si………………………………………………38 2.5.5.2 SIMS depth profile……………………………………………………………...38 Chapter3. Electrochemical investigation of Ni-W-P bath…………………...58 3.1 Introduction…………………………………………………………………………58 3.2 Literature review……………………………………………………………………59 3.2.1 Kinetics of the autocatalytic deposition of Ni-P alloys in ammoniacal solutions...59 3.2.2 Investigation of electroless Ni-based ternary alloys……………………………...60 3.3 The objective of this research……………………………………………………… 63 3.4 Experimental………………………………………………………………………..65 3.4.1 CV investigation…………………………………………………………….. …...65 3.4.2 UV-Vis measurement……………………………………………………………..65 3.4.3 XPS analysis……………………………………………………………………...65 3.5 Results and Discussions…………………………………………………………… 66 3.5.1 CV investigation………………………………………………………………….66 3.5.1.1 [Na2WO4] effect……………………………………………………………….. 67 3.5.1.2 pH effect………………………………………………………………………..67 3.5.2.3 Bath temperature effect…………………………………………………………68 3.5.2 UV results………………………………………………………………………...68 3.5.3 XPS analysis……………………...………………………………………………70 Chapter4. Conclusions…………………………………………………………76 Chapter5. References…………………………………………………………..78

    Chapter5. References
    1. Semiconductor Industrial Association (SIA) Roadmap (1997).
    2. Copper interconnects in Altera Device White Paper, Altera Corporation (2001).
    3. T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi and M. Murakami, Applied Surface Science, 99, p.265 (1996).
    4. M. A. Nicolet, Thin solid Films, 52, p.415 (1978).
    5. Y. Shacham-Diamand, Journal of Electronic Materials, 30, p.336 (2001).
    6. G. S. Sandhu, S. G. Meikle and T.T. Doan, Applied Physical Letter, 62, p.240 (1993).
    7. M. H. Staia, E. S. Puchi, D. B. Lewis, J. Cawley and D. Morel, Surface and Coatings Technology, 86-87, p.432 (1996).
    8. M. H. Tsai, S. C. Sun, C. P. Lee, H. T. Chiu and S. C. Wu, Thin solid films, 270, p.531 (1995).
    9. K. N. Cho, C. H. Han, K. B. Noh and J. G. Lee, Japan Journal of Appied Physics, 37, p.6502 (1998).
    10. K. C. Walter, R. P. Fetherston, K. Sridharan, A. Chen and J. R Conrad, Materials Research Bulletin, 29, p.827 (1994).
    11. K. Baba and R. Hatada, Surface and Coatings Technology, 84, p.429 (1996).
    12. A. Brenner, Journal of Research National Bar, Standard, 37, p.1 (1946).
    13. M. Paunovic, P. J. Bailey and R.G. Schad, Journal of Tthe Electrochemical Society, p.1843 (1994).
    14. V. M. Dubin and Y. Shacham-Diamand, Journal of The Electrochemical Society, 144, p.898 (1997).
    15. Y. Shacham-Diamand and S. Lopatin, Microelectronic Engineering, 37/38, p.77 (1997).
    16. Y. Shacham-Diamand, Y. Sverdlov and N. Petrov, Journal of Tthe Electrochemical Society, 148, c162 (2001).
    17. N. Petrov, A. Kolics, Y. Shacham-Diamand and I. Ivanov, 201stElectrochemical Society Meeting, Philadelphia, May, p.535 (2002).
    18. Y. Shacham-Diamand, A. Zylberman and N. Petrov,Y., Microelectronic Engineering, p.315 (2002).
    19. K. Baba and R. Hatada, Surface and Coatings Technology, 84, p.429(1996).
    20. J. F. Rohan and G.. O’Riordan, Microelectronic Engineering, 65, p.77 (2003).
    21. T. Osaka, N. Takano, T. Kurokawa and T. Kaneko, Surface And Coatings Technology, 169-170, p.124 (2003).
    22. Y. Wu, Y. Y. Wang and C. C. Wan, Journal of the Electrochemical Society (2003 submit).
    (Electroless Deposition of a Novel NiMoP Diffusion Barrier/Seed Layer for Cu Interconnect).
    23. Y. Wu, W. C. Chen, H. P. Fong, C. C. Wan and Y. Y. Wang, Journal of The Electrochemical Society, 149, G309 (2002).
    24. E. D. D’Ottavio, U.S. Pat. 3,532,518 (1970); U.S. Pat. 3,650,913 (1972).
    25. T. Osaka, H. Takematsu, and K Nihei, Journal of The Electrochemical Society, 148, c162 (2001).
    26. P. Nash, ASM International, June (1991).
    27. E.J. O’Sullivan, A.G. Schrott, M. Paunovic, C.J. Sambucetti, J.R. Marino, P.J. Bailey, S. Kaja and K.W. Semkow, IBM Journal Research Development, 42, p.607 (1998) .
    28. G. O, M. Juan, B. Hajdu, American Electroplaters and Surface Finishers Society, p.3(1990).
    29. M. M. Younan, Galvanotechnik, 4, p.932 (2002).
    30. Y. Y. Tsai, F. B. Wu, Y. I Chen, Surface And Coatings Technology, 146-147, p.502 (2001).
    31. T. Osaka, N. Takano, T. Kurokawa, T. Kaneko, and K. Ueno, Journal of The Electrochemical Society,149, C573 (2002).
    32. International technology roadmap for semiconductors, 2001 edition.
    33. I. Koiwa, M. Usuda, and T. Osaka, Journal of The Electrochemical Society,135,p.1222 (1988).
    34. D. Kim, K. Aoki and O.Takano, Journal of The Electrochemical Society,142, p.3763 (1995).
    35. K. Chen,Y. Chen, Plating and Surface Finishing.,84, p.80 (1997).
    36. T. Osaka, M. Usuda, I. Koiwa, H. Sawai, Jpn. J. Appl. Phys., 27(10), p1885 (1988).
    37. S.-H. Kim, D.-S. Chung, K.-C. Park, K.-B. Kim and S.-H. Min, Journal of The Electrochemical Society, 146, p.1455 (1999).
    38. A.E. Kaloyeros, X. Chen, T. Stark, K. Kumar, S.-C. Seo, G.G. Peterson, H.L. Frisch, B. Arkles and J. Sullivan, Journal of The Electrochemical Society,146,p.170 (1999).
    39. X. Sun, J.S. Reid, E. Kolawa, M.-A. Nicolet and R.P. Ruiz, Journal of Applied Physic, 81, p.664(1997).
    40. V. D. Papachristos, C. N. Panagopoulos and U. Wahlstrom, Material Science Engineering, A281, P.286 (2000).
    41. K. Abe, Y. Harada and H. Onoda, Applied Physical Letter, 71(19), p.2782 (1997).
    42. S.S. Wong, C. Ryu, H. Lee and L.S. Loke, IEEE, p.98 (1998).
    43. C. Ryu, L.S. Loke and T. Nogami ,IEEE, p.201(1997).
    44. R. G. Wilson, Secondary ion mass spectrometry: a practical handbook for depth profiling and bulk impurity analysis, John Wiley &Sons Inc. (1989).
    45. L. Liu, International Journal of Modern Physics B, 16, p.322 (2002).
    46. C. Wagner and W. Traud, Zata Electrochemistry, 44, p.391(1938).
    47. B. J. Hwang and S. H. Lin, Journal of The Electrochemical Society,142, p.3749 , (1995).
    48. A. Brenner, Electrodeposition of alloys,Vol.1-2, Academic Press, New York (1963).
    49. E. J Padlaha and D. Landolt, Journal of The Electrochemical Society,144, p.1672 (1997).
    50. M. Ebn Touhami, E. Chassaing and M. Cherkaoui, Electrochimica Acta, 97, p.1 721 (1998).
    51. W.E. Clark and M. H. Lietzke, Journal of The Electrochemical Society, 99, p. 246 (1952).
    52. D.W. Ernst, R. F. Amlie and M.L. Holt, Journal of The Electrochemical Society,105, p.686 (1958).
    53. E. Chassaing, K. Vu Quang and R.Wiart, Journal of Applied Electrochemistry,19, p.839 (1989).
    54. G. Lu and G. Zangari, Journal of The Electrochemical Society, 150, C777(2003).
    55. N. DU and M. PRITZKER, Journal of Applied Electrochemistry, 33, p.1001(2003).
    56. I. Ohno, Material science Engineering, A146, p.33 (1991).
    57. M. EBN Touham, M. Chassaing, Journal of Applied Electrochemistry, 26, p. 487 (1996).
    58. F. Pearlstein and R. Weightman, Electrochemical Technology, 6, p.427 (1968).
    59. O. Younes and E. Gileadi, Journal of The Electrochemical Society, 149, C100 (2002).
    60. L. V. Shastri, R. E. Huie and P. Neta, Journal of Physical Chemistry, 94, P.1895 (1990).
    61. E. Beltowska-Lehman and P. Ozga, Electrochimistry Acta, 43, p.617(1998).
    62. Rauscher, V. Rogoll, M.E. Baumgaertner and Ch. J. Raub, Trans Inst. Metal Finish,71(3), p. 95 (1993).
    63. N. Petrov, Y. Sverdlov and Y. Shacham-Diamand, Journal of The Electrochemical Society, 149, C187 (2002).
    64. I. Genutiene, J. Lenkaitiene and Z. Jusys, Journal of Applied Electrochemistry, 26, p.118 (1996).
    65. S. Song, X. Bao and M. Muhler, Applied Surface Science,148, p.241(1999).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE