研究生: |
馬莉文 Ma, Li-Wen |
---|---|
論文名稱: |
淨零新解方-農地碳匯 REITs 的可行性分析 A Novel Approach to Net Zero - Feasibility Analysis of Agricultural Land Carbon Sink REITs |
指導教授: |
林哲群
Lin, Che-Chun |
口試委員: |
楊屯山
Yang, Twan-Shan 蔡錦堂 Tsai, Chin-tang 索樂晴 So, Leh-Chyan |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 財務金融 Master Program of Finance and Banking |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 淨零排放 、農地碳匯 、碳交易 、不動產投資信託 、休耕農地 、土壤碳匯方法學 、碳匯金融 |
外文關鍵詞: | Net Zero Emissions, Agricultural Land Carbon Sink, Carbon Trading, Real Estate Investment Trusts (REITs), Fallow Farmland, Soil Carbon Sink Methodology, Carbon Sink Financial |
相關次數: | 點閱:68 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣候變遷是當今全球面臨最嚴重和最緊迫的問題之一,淨零排放 (Net Zero Emissions) 成了國際共識也是世界各國共同努力的目標。農地碳匯 (Agricultural Land Carbon Sink) 意指在農業土地上,透過農業生產過程中植物的光合作用,吸收並儲存二氧化碳於土壤中,對於實現淨零排放目標扮演至關重要的角色。本研究旨在探討一種結合農地碳匯和不動產投資信託 (REITs) 的金融應用工具。為此,本研究建立了一套符合國際碳權認證機構要求的土壤碳匯方法學,以提高碳交易的可信度和透明度。同時,研究結果顯示農地可以通過合理的土地利用和管理來提高農地碳儲存量,這對於農地碳匯的開發和應用具有關鍵指標作用。再者,本研究針對台灣現行農業現況分析也發現,在碳交易市場上,農地碳匯增量的現值普遍高於目前農地使用的利潤,也遠大於政府補貼金額且可以產生穩定且持續的期末淨現金流,這對農地持有者和投資人來說皆是有利的選項。由此可知,未來在國際碳市場的需求帶動下,農地碳匯 REITs 有機會成為極具潛力的碳匯金融商品,除了可以補償溫室氣體排放帶來的負面影響,協助企業及政府達到淨零排放目標外,還能解決台灣長久以來土地使用問題,成為農地持有者、投資人、企業、政府、環境的多贏策略。
Climate change is one of the most serious and pressing global challenges today, and achieving Net Zero Emissions has become an international consensus and a common goal for countries around the world. Agricultural Land Carbon Sink refers to the process of absorbing and storing carbon dioxide in the soil through the photosynthesis of plants during agricultural production, playing a crucial role in achieving the Net Zero Emissions target. This study aims to explore a financial application that combines Agricultural Land Carbon Sink with Real Estate Investment Trusts (REITs). To this end, we establish a soil carbon sink methodology that complies with international carbon credit certification requirements to enhance the credibility and transparency of carbon trading. Additionally, the research findings demonstrate that agricultural land can increase carbon storage through proper land use and management, which serves as a key indicator for the development and application of Agricultural Land Carbon Sink. Moreover, the analysis of the current agricultural situation in Taiwan reveals that the present value of the incremental agricultural land carbon sink is generally higher than the current profits from agricultural land use and significantly surpasses government subsidies while generating stable and sustained net cash flows. Thus, it presents advantageous options for landholders and investors. Based on the potential demand in the international carbon market, Agricultural Land Carbon Sink REITs have the opportunity to become highly promising carbon sink financial instruments. Apart from compensating for the negative impact of greenhouse gas emissions and assisting businesses and governments in achieving the Net Zero Emissions goal, they can also address Taiwan's long-standing land use issues, providing a win-win strategy for landholders, investors, businesses, governments, and the environment.
1.王芝琦、陳聖璋、張麗華 (2002),「臺灣地區森林碳匯潛力之探討」,《中華水土保持學報》,33(2),111-124。
2.王振民、李萬鑫、王旭輝 (2020),「碳匯金融的意義、挑戰與前景」,《資源與產業》,(11),78-82。
3.王朝霖、蕭介民、劉桂娟、徐宗欣、張文智、鄭成城 (2006),「台灣溫室氣體盤查及資料庫建置研究計畫(二)─自然碳匯因子盤查」,行政院環境保護署委託研究報告。
4.王博、王明義、楊貴斌 (2020),「不同耕作方式對黃淮海地區土壤碳儲量的影響」,《生態學報》,40(11),3955-3966。
5.中華肥料協會 (2016),「綠肥作物栽培利用手冊」。
6.台灣不動產經紀商業同業公會全國聯合會 (2019),「2019年不動產市場現況」。
7.行政院農業委員會 (2020),「農業統計年報」。
8.行政院農業委員會 (2022),「臺灣2050淨零轉型自然碳匯關鍵戰略社會溝通會議」,行政院農業委員會簡報。
9.行政院農業委員會 (2022),「農業統計年報」。
10.行政院農業委員會 (2023),「臺灣 2050 淨零轉型「自然碳匯」關鍵戰略行動計畫(草案)」。
11.行政院農業委員會農業試驗所所長室 (2016),「氮素肥料使用建議指引」。
12.行政院環境保護署 (2021),「台灣2050淨零排放路徑及策略總說明」,https://www.epa.gov.tw/File/1BB867FD67751EA0。
13.行政院環境保護署 (2022),「第六章 土地利用、土地利用變化及林業部門 [政府報告]」,《中華民國國家溫室氣體清冊報告 (2022 年版)》,161-200,台北: 行政院環境保護署。
14.吳妍婷、鄭佳宏、蔡青蓉 (2018),「臺灣溼地碳儲存潛力之研究:以關刀溪濕地為例」,《農業推廣服務系統研究彙刊》,106,27-38。
15.吳品儒、黃文生、陳彥竹、洪永泰、張元鴻、陳思祺 (2019),「以GIS建置臺灣陸域自然碳匯盤查資訊平台及其應用」,《林業研究季刊》,41(4),267-280。
16.李旭、劉旭 (2021),「碳匯 REITs 的發展前景及作用」,《財務與會計》,(6),31-36。
17.李梓軒、王維清、汪洋 (2021),「碳匯金融的發展現狀、問題與對策」,《當代金融家》,(6),33-36。
18.李婷婷、陳淑娟、葉章政 (2020),「臺灣森林土壤碳庫底量推估:基於空間迴歸模型之應用」, 《林業研究季刊》,42(2),157-173。
19.邱于慈、簡秀明、周婉真、陳信雄、楊秋忠、劉錦添 (2012),「以應用擴張成本法估算臺灣森林碳匯之經濟價值」,《臺灣林業科學》,27(2),77-87。
20.林佑儒、柳婉郁 (2020),「考量碳給付與病蟲害對土地期望價值之經濟分析」,《應用經濟論叢》,(107),133-176。
21.林建宏、許祖儒、吳翠玲、陳文智、許明德 (2016),「臺灣自然碳匯價值評估模式之研發與應用」,《永續環境研究》,6(1),37-49。
22.林靜宜、鄭伯壎、陳鴻源、邱文良 (2019),「台灣森林碳匯量及其價值評估」,《中華林學季刊》,52(4),491-504。
23.柳婉郁、林國慶 (2011),「私有地主參與農地碳匯合約之決策分析」,《農業與經濟》,(46),1-47。
24.徐海濤、張力、孟繁華 (2021),「碳匯金融的定義、特徵及作用」,《金融理論與實踐》,(2),54-61。
25.徐敏雄、高憲彥、張正、呂金誠、陳煥宗、賴振洲、林昭遠、邱清安 (2006),「台灣不同生態系統植物生物量碳係數及碳含量百分比之研究」,《中華農業氣象》,9(2),117-128。
26.徐磊、江曉玲、趙偉國 (2019),「覆蓋作物類型對亞熱帶地區土壤有機碳儲量的影響」,《生態學報》,39(17),6144-6154。
27.陳彥豪、簡孟哲、李文汕、洪麗芬 (1998),「森林碳匯的評估及政策意涵」,《中華水土保持學報》,29(4),249-261。
28.陳捷、姜永信 (2021),「碳匯 REITs 的可持續性分析及發展建議」,《財務研究》,(2),64-72。
29.陳曉偉、劉衛東、張國棟、陳敏 (2019),「台灣土壤有機碳儲量估算及其空間分布」,《環境科學》,40(9),3846-3854。
30.陳鴻源、許祈榮、鍾沛儒、鍾宜婷 (2015),「台灣地區森林碳匯及碳排放量估算之研究」,《永續能源與環境學刊》,6(1),28-37。
31.張煜、胡靜、張芳芳、蔣剛毅、張藝 (2021),「利用Sentinel-2和Landsat 8影像繪製農田土壤有機碳含量圖」,《遙感技術與應用》,36(2),223-233。
32.程龍、譚瑞 (2021),「碳匯 REITs 面臨的挑戰和解決方案」,《中國金融》,(12),63-66。
33.楊秋忠 (2021),「土壤碳儲存:全世界都在關注氣候問題,它就是地球碳中和的救星!」,https://opinion.cw.com.tw/blog/profile/52/article/11587。
34.蔡佩紋 (2013),「政府補貼的效果分析與因素研究」,碩士論文,台北: 國立政治大學財政研究所。
35.蔡麗琴、張芸琦 (2020),「台灣土地利用管理制度與績效之評估」,《土地問題研究》,23(2),1-27。
36.顧立偉、高中江、周新峰 (2018),「不同休耕方式對紅壤區土壤有機碳的影響」,《生態學報》,38(8),2712-2722。
37.Blanco-Canqui, H., & Lal, R. (2009), “Crop residue removal impacts on soil productivity and environmental quality” Critical Reviews in Plant Sciences, 28(3), 139-163.
38.Brounen, D., Kok, N., & Quigley, J. M. (2012), “Real estate investment trusts and their potential for supporting carbon management,” Journal of Real Estate Research, 34(3), 343-368.
39.Chen, B., Li, X., Wang, Y., Li, Y., Li, L., & Liu, J. (2021), “Spatial heterogeneity of soil organic carbon in different forest types in the Loess Plateau, China,” Ecological Indicators, 123, 107358.
40.Chen, S., & Li, J. (2021), “The Effect of Carbon Derivatives Portfolio on Financial Risk Hedging in Carbon Markets,” Energy Reports, 7, 3017-3025.
41.Chen, X., & Wang, Z.. (2021), “The Potential of Carbon Offset Trust Funds in Financing Ecosystem Services,” Sustainability, 13(6), 3046.
42.de Coninck, H., Meadowcroft, J., & Pattberg, P. (2012), “Designing a governance framework for international carbon dioxide capture and storage demonstration and deployment,” Energy Policy, 41, 789-798.
43.Duncan, J., & Spitzeck, H. (2018), “Financing blue carbon: A preliminary review of carbon financing options for coastal blue carbon,” Frontiers in Marine Science, 5, 1-13.
44.Easter, M., Paustian, K., Killian, K., et al. (2019), “Soil organic carbon changes in diversified cropping systems: A meta-analysis using the RothC model. Agriculture,” Ecosystems & Environment, 284, 106570.
45.Food and Agriculture Organization of the United Nations. (2015), “The underestimated potential of organic farming to mitigate climate change,” Nature communications, 1(1), 1-8.
46.Food and Agriculture Organization of the United Nations. (2015), Status of the world's soil resources 2015, http://www.fao.org/3/a-i5199e.pdf.
47.Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Olsen, A., ... & Peters, G. P. (2020), “Global carbon budget 2020,” Earth System Science Data, 12(4), 3269-3340.
48.Gallagher, L. A., & Li, Y. (2015), “Carbon neutral real estate investment trusts (REITs): An exploratory analysis,” Journal of Sustainable Real Estate, 7(1), 91-114.
49.Global Market Insights Inc. (2021), C Carbon Offsets Market Size By Type (Voluntary {REDD+, Agriculture, Forestry and Others}, Compliance {Forestry, REDD+, Agriculture, Methane Recovery, Landfill Methane, Coal Mine Methane}), By Application (Transportation, Oil & Gas, Chemicals, Utilities, Aviation), Industry Analysis Report, Regional Outlook, Growth Potential, Price Trends, Competitive Market Share & Forecast, 2021 – 2027. https://www.gminsights.com/industry-analysis/carbon-offsets-market
50.Gold Standard. (2021), “Soil Carbon and Sustainable Land Use,” https://www.goldstandard.org/take-action/projects/soil-carbon-and-sustainable-land-use.
51.Guo, Y., Wei, X., Liu, Y., & Zhao, X. (2020), “Carbon storage and sequestration potential of natural and planted forests in a tropical mountainous region of southwest China,” Forest Ecology and Management, 461, 117996.
52.Houghton, R. A. (2019), “The role of natural carbon sinks in climate policy,” Frontiers in Climate, 1, 1-8.
53.Hsu, M. H., Yang, C. M., Chang, C. H., Chang, S. T., & Lee, S. S. (2006), “Carbon storage in green manure crops and paddy soils in Taiwan” Soil Science Society of America Journal, 70(5), 1629-1635.
54.IHS Markit. (2021), “The carbon offset market could become the next big thing in finance,” https://www.ihsmarkit.com/research-analysis/the-carbon-offset-market-could-become-the-next-big-thing-in-finance.html
55.International Union for Conservation of Nature (IUCN). (2019), Green finance and natural carbon sinks: Advancing sustainable finance for conservation and climate.
56.IPCC. (2006), 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use, IPCC.
57.Ireland, K. E., van Wesemael, B., & Yeluripati, J. (2019), “Soil carbon modeling: a review of the development, current status, and future needs” Current Pollution Reports, 5(4), 204-218.
58.Jenkinson, D. S., & Rayner, J. H. (1977), “The turnover of soil organic matter in some of the Rothamsted classical experiments,” Soil Science, 123(5), 298-305.
59.Lal, R. (2004), “Soil carbon sequestration to mitigate climate change,” Geoderma, 123(1-2), 1-22.
60.Lal, R. (2010), “Soil carbon sequestration for mitigating climate change: the way forward,” Climatic change, 103(1-2), 431-438.
61.Lal, R. (2015), “Restoring soil quality to mitigate soil degradation,” Sustainability, 7(5), 5875-5895.
62.Lal, R. (2019), “Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems,” Global change biology, 25(7), 2193-2205.
63.Leifeld, J., & Fuhrer, J. (2010), “The underestimated potential of organic farming to mitigate climate change,” Nature communications, 1(1), 1-8.
64.Le Quéré, C., Jackson, R. B., Jones, M. W., Smith, A. J. P., Abernethy, S., Andrew, R. M., ... & Friedlingstein, P. (2021), “Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement.,” Nature Climate Change, 11(3), 230-236.
65.Li, C., Zhang, W., Li, L., et al. (2018), “Responses of soil organic carbon and nitrogen to land use changes in the northeast China,” Journal of Environmental Management, 210, 282-290.
66.Li, C., Sun, X., & Zhang, H. (2021), “The pricing of carbon options based on the uncertainty of carbon market supply and demand,” Applied Energy, 295, 116926.
67.Li, Y., Wang, Z., & Wang, H. (2021), “The dynamic relationship between carbon futures and spot prices in China's carbon market: Evidence from a quantile regression approach,” Energy Economics, 104, 105100.
68.Liu, S., Wang, L., Zhou, Y., Zhang, X., & Li, R. (2021), “The optimal carbon bond portfolio and its risk management under uncertainty,” Journal of Cleaner Production, 315, 128122.
69.Liu, X., Lu, D., Chen, Q., Ma, Z., & Xu, B. (2020), “Estimating aboveground forest biomass and carbon sequestration in China using Landsat satellite imagery and machine learning algorithms,” Journal of Environmental Management, 270, 110849.
70.Li, X., Huang, T., & Shen, H. (2021), “Research on the Investment Performance of New Energy REITs: Evidence from China,” Sustainability, 13(5), 2635.
71.Mackey, B., DellaSala, D. A., Kormos, C., Lindenmayer, D., Kumpel, N., Zimmerman, B., ... & Nepstad, D. (2013), “Ecosystem services and carbon in the tropics: a review of our current understanding and the potential for mitigation,” Climate Change, 119(1), 163-174.
72.Millennium Ecosystem Assessment. (2005), Ecosystem services and biodiversity in developing countries, World Resources Institute.
73.Nagendra, R., Khanna, M., & Zilberman, D. (2016), “Carbon markets and technological innovation,” Environmental and Resource Economics, 63(2), 411-428.
74.Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987), “Analysis of factors controlling soil organic matter levels in Great Plains grasslands,” Soil Science Society of America Journal, 51(5), 1173-1179.
75.Parton, W. J., Hartman, M., Ojima, D., & Schimel, D. (1998), “DAYCENT and its land surface submodel: description and testing,” Global and Planetary Change, 19(1-4), 35-48.
76.Rasse, D. P., & Smucker, A. J. (1998), “Carbon isotope ratios of organic matter in soils and particle-size fractions as influenced by cropping and tillage,” Soil Science Society of America Journal, 62(3), 683-689.
77.Rodríguez-Labajos, B., & Urkidi, L. (2017), “Environmental justice in the Anthropocene: Towards a political ecology of the biosphere,” Current Opinion in Environmental Sustainability, 24, 1-5.
78.Schleussner, C.-F., Rogelj, J., Schaeffer, M., Lissner, T., Licker, R., Fischer, E. M., ... & Hare, W. (2016), “The Paris Agreement and the Sustainable Development Goals: Intersecting challenges and opportunities.,” The Lancet Planetary Health, 1(1), e8-e10.
79.Schwartz, M. (2020), “Carbon sequestration REITs: A novel financial product that combines carbon credit trading with real estate investment,” Journal of Sustainable Finance & Investment, 10(3), 270-279.
80.Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002), “Stabilization mechanisms of soil organic matter: implications for C-saturation of soils,” Plant and soil, 241(2), 155-176.
81.Skovgaard, J., & Neergaard, P. (2016), “The marketization of carbon mitigation: Renewables, energy efficiency and the creation of a new commodity,” Energy Policy, 98, 679-687.
82.Song, Z., Wang, S., Sun, M., & Zhang, H. (2021), “Research on the Operation Mechanism and Development Trend of Healthcare REITs,” International Journal of Environmental Research and Public Health, 18(5), 2365.
83.Stavins, R. N., Newell, R. G., & Brewer, J. (2000), “The Costs of Carbon Mitigation Through Joint Implementation,” Nature, 407(6806), 903-904.
84.Stavins, R. N., Newell, R. G., & Jaffe, A. B. (2000), “The Costs of Carbon Mitigation Through Joint Implementation,” Nature, 398(6729), 685-686.
85.Sun, Y. & Chen, Q. (2020), “The Prospects and Risks of Healthcare REITs,” Investment Research, 39(8), 137-145.
86.UNFCCC. (2022), “National Determined Contributions Synthesis Report.” https://unfccc.int/sites/default/files/resource/2022-ndc-synthesis-report-advance-version.pdf
87.United Nations Framework Convention on Climate Change. (1998), “Kyoto Protocol to the United Nations Framework Convention on Climate Change,” https://unfccc.int/sites/default/files/kyoto_protocol.pdf
88.United Nations Framework Convention on Climate Change. (2006), “Methodological Tool: AMS-III.AG: Agriculture,” https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am03version10.pdf
89.U.S. Energy Information Administration (EIA). (2021), “International energy outlook 2021,” https://www.eia.gov/international/outlooks/ieo/
90.Verified Carbon Standard. (2021), “VCS Program Methodology VM0042: Agriculture, Forestry and Other Land Use (AFOLU) Projects,” https://www.v-c-s.org/methodologies/vm0042
91.Verra. (2021), “VM0042 – Land Use, Land-Use Change and Forestry (LULUCF) Projects,” https://verra.org/project/vm0042-land-use-land-use-change-and-forestry-lulucf-projects/
92.Wang, L., Zhang, Y., Liu, S., & Li, R. (2021), “Carbon investment fund portfolio selection and carbon credit price forecast under uncertainty,” Journal of Cleaner Production, 319, 128755.