簡易檢索 / 詳目顯示

研究生: 張寶鑫
CHANG, PAO-HSIN
論文名稱: p-GaN/AgSb與p-GaN/AgMn反射式歐姆電極光電特性與熱穩定性之研究
Study of Optoelectric Properties and Thermal Stability of p-GaN/AgSb and p-GaN/AgMn Reflective Ohmic Contacts
指導教授: 黃倉秀
HUANG, TSUNG-SHIEW
口試委員: 黃金花
洪慧芬
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 107
中文關鍵詞: 反射式歐姆電極
外文關鍵詞: AgSb, AgMn
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以雙電子槍蒸鍍系統製備p-GaN的反射式歐姆電極AgSb(6 at%)、AgSb(2 at%)、Ag(150 nm)/Sb(4 nm)、AgMn(6 at%)、AgMn(4 at%)及Ag(150 nm)/Mn(2 nm)等六組試片,探討不同合金成分以及爐管退火(FA)與快速退火(RTA)兩種退火方式對於AgSb及AgMn反射式歐姆電極光電特性與熱穩定性的影響。探討內容包含反射式歐姆電極的光反射率、金屬薄膜片電阻與特徵接觸電阻,以及各性質之熱穩定性。並使用掃描式電子顯微鏡觀察試片表面樣貌,分析不同合金成分的特性差異及抑制退火後Ag薄膜凝聚的效果。我們發現Ag(150 nm)/Sb(4 nm)即可抑制Ag薄膜的高溫退火凝聚,AgSb合金退火後也不會有凝聚而破孔之現象。但Ag(150 nm)/Mn(2 nm)則無法抑制Ag膜凝縮,經過500 ℃爐管退火後Ag膜表面粗糙,凝聚成Ag的粒狀物,光反射率明顯下降。AgMn(4 at%)合金薄膜經500 ℃退火後表面未發現明顯破孔,可抑制Ag膜的凝縮。六組試片除AgSb(6 at%)外,經爐管退火或快速退火,且經400 ℃時效退火1小時後反射率變化不大,AgSb(6 at%)爐管退火後再經時效退火後反射率反而略微提升。六組試片的金屬薄膜片電阻與特徵接觸電阻數值皆具良好熱穩定性。綜合考量光反射率、金屬薄膜片電阻、特徵接觸電阻與熱穩定性,Ag(150 nm)/Sb(4 nm)有相當優異的表現。從歐傑電子能譜縱深分析可發現退火後Ag(150 nm)/Sb(4 nm)的 Sb溶進Ag薄膜形成AgSb合金,也就是說相當於1.5 at%即可抑制Ag膜的凝縮。Ag(150 nm)/Sb(4 nm)經大氣環境 500 ℃爐管退火10分鐘後,可以於460 nm藍光具94 %的光反射率,金屬薄膜片電阻約為0.1 Ω/□,特徵接觸電阻約為2.7 × 10-3 Ω-cm2且具良好熱穩定性,為優秀的歐姆電極。


    In this study, all the samples AgSb(6 at%), AgSb(2 at%), Ag(150 nm)/Sb(4 nm), AgMn(6 at%), AgMn(4 at%), and Ag(150 nm)/Mn(2 nm) were deposited on the p-GaN by dual E-gun evaporation system. The samples were annealed at 500℃ by three different annealing conditions, furnace annealing(FA) in air ambient for 10 min, rapid thermal annealing(RTA) in O2 ambient for 1 min, and rapid thermal annealing(RTA) in air ambient for 1 min. Thermal stability test were performed by annealing at 400℃in air ambient for 60 min. Optoelectricproperties and thermal stability of p-GaN/AgSb and p-GaN/AgMn reflective ohmic contacts were investigated by SEM analysis, reflectance at 460 nm, sheet resistance of metal film , and specific contact resistance. The result show annealed Ag(150 nm)/Sb(4 nm) could suppress the agglomeration of Ag film. Auger depth profile showed Sb dissolved in Ag film for annealed Ag(150 nm)/Sb(4 nm). The specific contact resistance was 2.7 × 10-3 Ω-cm2 , reflectance was 94% at 460 nm, and sheet resistance of metal film was 0.1 Ω/□ for annealed Ag(150 nm)/Sb(4 nm) contact at 500℃ in air ambient for 10 min. The p-GaN/Sb(4 nm)/Ag(150 nm) reflective ohmic contacts showed good thermal stability.

    摘要 I 致謝 II 目錄 IV 表格目錄 V 圖片目錄 VI 第一章 緒論 1-1 前言 1 1-2 基本理論 3 1-3 文獻回顧 8 1-4 研究動機與目的 12 第二章 實驗 2-1 試片設計 13 2-2 實驗方法 14 第三章 結果與討論 3-1 表面結構分析 18 3-2 退火對各試片光反射率及其熱穩定性的影響 19 3-3退火對金屬薄膜片電阻及其熱穩定性的影響 21 3-4 特徵接觸電阻量測結果與分析 22 第四章 結論 25 參考文獻 27 表格 表1 ~ 表5 圖片 圖1 ~ 圖59

    1.H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353 (1986).

    2.S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys. 30, L1705 (1991).

    3.H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28 , L2112 (1989).

    4.S. Nakamura, M. Senoh, and T. Mukai, “Highly p-typed Mg-doped GaN films grown with GaN buffer layers,” Jpn. J. Appl. Phys. 30, L1708 (1991).

    5.A. Y. C. Yu, “Electron tunneling and contact resistance of metal-silicon contact barriers,” Solid State Electron. 13, 239 (1970).

    6.C. Y. Chang, Y. K. Fang, and S. M. Sze, “Specific contact resistance of metal-semiconductor barriers,” Solid State Electron. 14, 541 (1971).

    7.S. M. Sze, Physics of Semiconductor Devices (Wiley, New York), p.245, 1981.

    8.J. T. Trexler, S. J. Pearton, P. H. Holloway, M. G. Mier, K. R. Evans, and R. F. Karlicek, “Comparison of Ni/Au, Pd/Au, and Cr/Au Metallizations for Ohmic Contacts to p-GaN,” Mater. Res. Soc. Symp. Proc. 449, 1091 (1997).

    9.F. A. Padovani, and R. Stratton, “Field and thermionic-field emission in Schottky barriers,” Solid State Electron. 9, 695 (1966).

    10.C. R. Crowell, and V. L. Rideout, “Normalized thermionic-field (TF) emission in metal-semiconductor (Schottky) barriers,” Solid State Electron. 12, 89 (1969).

    11.R. Stratton, and F. A. Padovani, “Differential resistance peaks of Schottky barrier diodes,” Solid State Electron. 10, 813 (1967).

    12.G. S. Marlow, and M. B. Das, “The Effects of Contact Size and Non-Zero Metal Resistance on the Determination of Specific Contact Resistance,” Solid State Electron. 25, 91 (1982).

    13.V. Y. Niskov, and G. A. Kubetskii, “Resistance of ohmic contacts between metals and semiconductor films,” Sov. Phys. Semicond. 4, 1553 (1971).

    14.W. G. Bickley, Bessel Functions, pp. 220-225. University Press, Cambridge (1960).

    15.J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,” Appl. Phys. Lett. 73, 2953 (1998).

    16.J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel, and T. F. Kuech, “p-GaN surface treatments for metal contacts,” Appl. Phys. Lett. 76, 415 (2000).

    17.H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys. 81, 1315 (1997).

    18.S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of P-Type GaN Films,” Jpn. J. Appl. Phys. 31, 1258 (1992).

    19.Y. Ohba, and A. Hatano, “H-atom incorporation in Mg-doped GaN grown by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 33, L1367 (1994)

    20.Y. J. Lin, “H-atom incorporation in Mg-doped GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84,2760 (2004)

    21.J. K. Hol, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. 74, 1275 (1999)

    22.J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. 86, 4491 (1999)

    23.J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise,G.Christenson, Y.C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz,N. F. Gardner, R. S. Kern, and S. A. Stockmam, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. 78, 3379 (2001).

    24.W. S. Chen, S. C. Shei, S. J. Chang, Y. K. Su, W. C. Lai, C. H. Kuo, Y. C. Lin, C. S. Chang, T. K. Ko, Y. P. Hsu, and C. F. Shen, “Rapid thermal annealed InGaN/GaN flip-chip LEDs,” IEEE Trans. Electron Devices. 53, 32 (2006).
    25.李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,2002年,P.144。

    26.J. O. Song, J. S. Kwak, Y. Park, and T. Y. Seong, “Ohmic and degradation mechanisms of Ag contacts on p-type GaN,” Appl. Phys. Lett. 86, 062104 (2005).

    27.S. K. Sharma, and J. Spitz, “Hillock formation hole growth and agglomeration in thin silver films,” J. Appl. Phys. 86, 4491 (1999)

    28.J. Y. Kim, S. I. Na, G. Y. Ha, M. K. Kwon, I. K. Park, J. H. Lim, and S. J. Park, “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes,” Appl. Phys. Lett. 88, 043507 (2006).

    29.D. S. Zhao, S. M. Zhang, L. H. Duan, Y. T. Wang, D. S. Jiang, W. B. Liu, B. S. Zhang, and H. Yang, “Effects of Ag on Electrical Properties of Ag/Ni/p-GaN Ohmic Contact,” Phys. Lett. 24, 1741 (2007).

    30.H. W. Jang, and J. L. Lee, “Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN,” Appl. Phys. Lett. 85, 5920 (2004).

    31.H. W. Jang, and J. L. Lee, “Low-resistance and high-reflectance Ni Ag Ru Ni Au ohmic contact on p -type GaN,” Appl. Phys. Lett. 85, 4421 (2004).

    32.D. S. Leem, J. O. Song, H. G. Hong, J. S. Kwak, Y. Park, and T. Y. Seong, “High-Quality Cu-Ni Solid Solution/Ag Ohmic Contacts for Flip-Chip Light-Emitting Diodes,” Phys. Stat. Sol. (a). 201, 2823 (2004)

    33.J. O. Song, D. S. Leem, J. S. Kwak, O. H. Nam, Y. Park, and T. Y. Seong, “Low-resistance and highly-reflective Zn–Ni solid solution/Ag ohmic contacts for flipchip light-emitting diodes,” Appl. Phys. Lett. 83, 4990 (2003)

    34.K. Y. Ban, H. G. Hong, D. Y. Noh, J. I. Sohn, D. J. Kang, and T. Y. Seong, “Ir/Ag reflector for high-performance GaN-based near UV light emitting diodes,” Mater. Sci. Eng. B. 133, 26 (2006)

    35.J. Cho, H. Kim, Y. Park, and E. Yoon, “Effects of p-electrode reflectivity on extraction efficiency of nitride-based light-emitting diodes,” Appl. Phys. Expr. 1, 052001 (2008).

    36.K. Y. Ban, H. G. Hong, D. Y. Noh, T. Y. Seong, J. O. Song, and D. Kim, “Use of an indium zinc oxide interlayer for forming Ag-based Ohmic contacts to p-type GaN for UV-light-emitting diodes,” Semicond. Sci. Technol. 20, 921 (2005).

    37.H. G. Hong, K. Y. Ban, J. O. Song, J. Cho, Y. Park, J. S. Kwak, I. T. Ferguon, and T. Y. Seong, “High quality tin zinc oxide/Ag ohmic contacts for UV flip-chip light-emitting diodes,” Phys. Stat. Sol. (c)3, 2133 (2006).

    38.J. O. Song, J. S. Kwak, and T. Y. Seong, “Cu-doped indium oxide/Ag ohmic contacts for high-power flip-chip light-emitting diodes,” Appl. Phys. Lett. 86, 062103 (2005).

    39.H. G. Hong, J. O. Song, T. Lee, I. T. Ferguson, J. S. Kwak, and T. Y. Seong, “Improvement of the reverse leakage behavior of Ag-based ohmic contacts for GaN-based light-emitting diodes using MgZnO interlayer,” Mater. Sci. Eng. B. 129, 176 (2006).

    40.J. O. Song, D. S. Leem, J. S. Kwak, O. H. Nam, Y. Park, and T. Y. Seong. Low resistance and reflective, “Mg-doped indium oxide-Ag ohmic contacts for flip-chip light-emitting diodes,” IEEE Phot. Tech. Lett. 16, 1450 (2004)

    41.J. Y. Kim, S. I. Na, G. Y. Ha, M. K. Kwon, I. K. Park, J. H. Lim, and S. J. Park, “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes,” Appl. Phys. Lett. 88, 043507 (2006).

    42.J. H. Son, G. H. Jung, and J. L. Lee, “Enhancement of light reflectance and thermal stability in Ag–Cu alloy contacts on p -type GaN,” Appl. Phys. Lett. 93, 012102 (2008).

    43.H. Kim, K. H. Baik, J. Cho, J. W. Lee, S. Yoon, H Kim, S. N Lee, C. Sone, Y. Park, and T. Y. Seong, “High-reflectance and thermally stable AgCu alloy p-type reflectors for GaN-based light-emitting diodes,” IEEE Phot. Tech. Lett. 19, 336 (2007).

    44.J. H. Son, G. H. Jung, and J. L. Lee, “Highly reflective Ag–Cu alloy-based ohmic contact on p-type GaN using Ru overlayer,” Opt. Lett. 33, 2907 (2008).

    45.R. Kawai, T. Mori, W. Ochiai, A. Suzuki, M Iwaya, H. Amano, S. Kamiyama, and I. Akasaki, “High-reflectivity Ag-based p-type ohmic contacts for blue light-emitting diodes,” Phys. Status Solidi C. 6, S830 (2009).

    46.G. H. Jung, J. H. Son, Y. H. Song, and J. L. Lee, “Strain induced suppression of silver agglomeration of indium-containing silver contact,” Appl. Phys. Lett. 96, 201904 (2010).

    47.Y. H. Song, J. H. Son, G. H. Jung, and J. L. Lee, “Effects of Mg Additive on Inhibition of Ag Agglomeration in Ag-Based Ohmic Contacts on p-GaN,” Electrochm. Solid-State Lett. 13, H173 (2010)

    48.B. Y. Cheng, I. C. Chen, C. H. Kuo, and L. C. Chang, “High Reflectance Contacts to P-type GaN Using Ag-La Alloys,” ECS Transactions. 44, 1285 (2012).

    49.時聖立,國立清華大學材料與工程學系碩士學位論文, (2014)。

    50.H. Okamoto,Journal of phase equilibria. 14, 531 (1993)

    51.I. Karakaya, and W. T. Thompson, Journal of Phase Equilibria.11, 480 (1990)

    52.郭哲銓,國立清華大學材料與工程學系碩士學位論文, (1998)。

    53.S. M. Sze, Semiconductor devices, physics and technology (Wiley ; Bell Telephone Lab, New York), p.37, 1985.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE