簡易檢索 / 詳目顯示

研究生: 傅崇豪
Fu, Chung Hao
論文名稱: 高介電係數氧化層與矽鍺通道金氧半元件之研究
Process study of higher-k gate dielectric and Si/Ge channel in MOS devices
指導教授: 張廖貴術
Chang-Liao. Kuei-Shu
口試委員: 謝光前
胡振國
趙天生
李耀仁
張廖貴術
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 98
中文關鍵詞: 金氧半電晶體鍺基板高介電值介電層二氧化鉿
外文關鍵詞: EOT, Ge MOS, high k dielectric, HfO2
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了符合Ultra large-scale integration (ULSI)製程技術中元件微縮的趨勢,改採用高介電係數材料取代二氧化矽做為介電層。但是高介電係數氧化層的製程技術易導致界面氧化層的增生,這造成等效氧化層厚度微縮上的困難。之外,因為高介電係數介電層和矽基板間的界面品質不良導致載子遷移率下降。為了克服這些挑戰,高介電係數介電層,矽鍺或鍺通道等研究已經引起金氧半電晶體研究領域的關注。
    然而傳統的二氧化鉿(斜方晶系)因為介電係數介於15~20之間,難以將等效氧化層厚度微縮到0.9 nm以下,因此更高介電係數的介電層是值得研究。因為氧化鈦的介電係數約達60,我們使用微量的鈦金屬摻雜入二氧化鉿。鈦與二氧化鉿的堆疊結構在經過金屬閘極後600 oC的退火製程,等效氧化層厚度可低於0.76 nm。但在超過700 oC退火處理後的元件電特性會明顯衰退。
    為了進一步微縮元件的等效氧化層厚度,保持低閘極漏電流與維持元件可靠度是非常重要的,而四方晶系的二氧化鉿(k>30)被列為候選者之一。將氯電漿應用在堆疊高介電係數介電層的前置處理,使高介電係數(k>30)的四方晶體結構可以在650oC的退火製程下產生。藉由穿透式電子顯微鏡以及電容電壓曲線的量測結果,四方晶向二氧化鉿的介電係數約達35。光學能隙的量測值顯示,二氧化鉿在四方晶向和斜方晶向的能隙是相似的。
    電子和電洞遷移率在鍺基板上比起矽基板分別高出2倍和4倍,因此鍺通道成為解決高介電係數介電層所造成載子遷移率下降問題的候選者。首先我們以2 nm的矽蓋堆疊在鍺濃度7~32%的矽鍺基板上。基於金氧半元件在閘極漏電和可靠度的特性,用以提升載子遷移率的最佳化鍺濃度是在20%。後續我們再透過電漿浸潤式離子佈植(PIII)氮化處理矽鍺通道的金氧半元件,實驗結果顯示電特性會有顯著的提升。例如stress-induced leakage 可以減少50%, stress-induced flatband voltage shifts 也減少超過33%。此外在30%鍺含量的矽鍺虛擬基板,可藉由電漿浸潤式離子佈植對元件進行氮化工程,使等效氧化層的厚度微縮到0.96 nm。
    對於搭配超薄高介電係數氧化層的金氧半元件,為了同時達成在介電層與基板中高品質的界面層以及提高載子遷移率,我們提出了矽鍺超晶格結構的P型金氧半電晶體。實驗的結果顯示,電特性可以有顯著的提升。P型金氧半電晶體的電洞遷移率高出矽基板1倍,在汲極電流開關比率可達10的8次方而且等效氧化層厚約1 nm。源極與汲極的載子可在650oC時活化,和高介電值介電層的製程相容。
    最後,一個具有超低等效氧化層厚度(0.5 nm)和可接受的漏電流的鍺金氧半元件被提出。如此卓越的電特性歸功於具有高介電係數和大能隙的二氧化鉿。以四方晶向的二氧化鉿為介電層的鍺金氧半元件有較低的漏電和較好的熱穩定性。透過in-situ的H2O電漿製程,可得一介電常數約13的界面氧化層。此外,透過H2O電漿形成的界面層有較高的Ge4+含量,所以有較小的介面缺陷密度和遲滯現象。


    In order to meet the requirement of device scaling for ultra large scale integration (ULSI) technology, a high dielectric constant (high-k) gate insulator should be applied in MOS devices to further scale down the equivalent oxide thickness (EOT). However, regrowth of the interfacial layer may be induced by high-k dielectric processes, which render EOT scaling difficult. In addition, carrier mobility is degraded because of the poor quality of the high-k/Si interface. To overcome these challenges, studies of high-k gate dielectrics, SiGe and Ge channel have attracted much attention in the research fields of MOS field-effect-transistor (MOSFET) devices.
    The dielectric constant k of the traditional HfO2 dielectric (monoclinic phase), which is approximately 15 to 20, is not sufficiently high to reduce the EOT to below 0.9 nm for MOS devices. Thus, some exotic higher-k dielectrics deserve investigation. Because of k ≈ 60 for TiO2, HfO2 doped with Ti is studied. An EOT of 0.76 nm is obtained for a sample with a Ti/HfO2 higher-k dielectric after post-metallization annealing (PMA) at 600 °C. As the PMA is above 700 °C, the electrical characteristics of MOS device would be severely degraded.
    For reducing the EOT value, it is crucial to maintain low gate leakage current and the reliability of the MOS device. The tetragonal phase HfO2 (k > 30) is proposed to be a higher-k dielectric candidate. t-HfO2 can be formed by using a Cl2 plasma treatment at the HfO2/Si interface after post-deposition annealing at 650 °C. Using the results of cross-sectional transmission electron microscopy and capacitance–voltage measurement, we estimated the value of this t-HfO2 to be approximately 35. The optical bandgap value for t-HfO2 is similar to that of the monoclinic.
    Because Ge can offer twice the electron mobility and four times better hole mobility than Si, Ge is a promising candidate to resolve the issue of mobility degradation by high-k dielectrics. At first, a thin Si layer was grown upon SiGe channel layer as a capping layer. Different Ge contents from 7% to 32% in SiGe channel on electrical characteristics of MOS device were investigated. Based on gate leakage and reliability properties of MOS devices, the optimal Ge content in SiGe channel to achieve sufficient mobility enhancement is around 20%.
    Further, high-k gated MOS devices with a SiGe channel and nitridation treatment using plasma immersion ion implantation (PIII) were studied. Experimental results indicate that the electrical characteristics of high-k dielectric can be obviously improved by PIII nitridation. For instance, the values of stress-induced leakage are reduced by more than 50%, and the values of stress-induced-flat-band voltage shifts are reduced by more than 33%. Moreover, the EOT value of the MOS device with 30% Ge content in the SiGe channel and PIII nitridation can be reduced to 9.6 A.
    In order to achieve a high-quality interfacial layer between the high-k dielectric and the Si substrate as well as to enhance the carrier mobility degraded by an ultrathin high-k gate dielectric, a pMOSFET device with a novel super-lattice (SL) Si/Ge channels is proposed. Experimental results show that the electrical characteristics of the MOSFET can be obviously improved by using the SL virtual substrate. The peak hole mobility of the pMOSFET device with SL is enhanced by approximately 100% than that with Si. Moreover, the on-off ratio of the Id–Vg curve is more than eight orders, and the EOT value of the gate dielectric is ~1 nm. The source/drain activation temperature of 650 °C is particularly suitable to the high-k dielectric process.
    Finally, a Ge MOS device with an ultralow EOT of ~ 0.5 nm and acceptable leakage current of 0.5A/cm2 is presented in this work. The superior characteristics can be attributed to a tetragonal HfO2 with a higher k value (k~31) and comparable band gap. Besides, a Ge MOS device with t-HfO2 also shows a lower leakage current and better thermal stability. The IL with k~13 can be formed by in-situ H2O plasma treatment. Moreover, a Ge MOS device with the IL grown by H2O plasma shows smaller interface trap density and hysteresis effects due to a high composition of Ge+4.

    Contents Abstract (Engilish)…………………………………………………………..…Ⅰ Abstract (Chinese)………………………………………………………….....IV Acknowledgement…………....………..…………………………….……......VI Contents…………....…………………….…...……..…………………..…..VIII Table caption………………………………………………………………….XI Figure caption…………………………………………………………….…XII Chapter 1 Introduction 1.1 General Background………………………………………………………………………1 1.2 Issues on high-k dielectric engineering into Si/Ge COMS Process……………………….3 1.2.1 The bandgap of high-k dielectric:……………………………………………………..3 1.2.2 The reliability and mobility degradation of high-k dielectric:………………………. 4 1.2.3 The interfacial layer between high-k and Si substrate………………………………. 5 1.2.4 The nitridation engineering of high-k dielectric……………………………….…….6 1.3 An overview for the high-k dielectric of MOS device with Ge/SiGe channel…………….7 1.4 An overview for the Plasma Immersion Ion Implantation (PIII)…………………….…….9 1.5 Organization of the thesis………………………………………..…………………….…10 Chapter 2 A low gate leakage current and equivalent oxide thickness for MOSFET with Ti/HfO2 higher-k gate dielectric 2.1 Motivation……………………………………………………………………………….20 2.2 Experimental Procedure…………………………………………………………………20 2.3 Results and Discussion…………………………………………………………………..21 2.3.1 I-V and C-V Characteristics of MOS device…………………………………………21 2.3.2 TEM Analysis of high-k dielectric………………………………………………….…22 2.3.3 Electrical and Reliability Characteristics of MOSFET……………………………….22 2.4 Conclusion………………………………………………………………………………..23 Chapter 3 A higher-k tetragonal HfO2 formed by chlorine plasma treatment at interfacial layer for metal-oxide-semiconductor devices 3.1 Motivation………………………………………………………………………………..29 3.2 Experimental Procedure………………………………………………………………….30 3.3 Results and Discussion…………………………………………………………………...31 3.3.1 Material Analysis of HfO2 higher-k dielectric………………………………………..31 3.3.2 C-V and I-V Characteristics ………………………………………………………….34 3.4 Conclusion………………………………………………………………………………..35 Chapter 4 Electrical characteristics of SiGe channel MOS devices with high-k/metal gate incorporated with nitrogen by plasma immersion ion implantation 4.1 Motivation………………………………………………………………………………40 4.2 Experiment procedure…………………………………………………………………..41 4.3 Results and Discussion………………………………………………………………….42 4.3.1 Effects of Ge content in SiGe channel………………………………………………42 4.3.2 Reliability Properties of MOS device with various Ge content…………………..…45 4.3.3 I-V and CV characteristics of Ge MOS device with PIII nitridation………………..46 4.3.4 The effects of PIII nitridation on uniformity and leakage current of GeMOS………47 4.3.5 The reliability characteristics of GeMOS with PIII nitridation ……………………..49 4.4 Conclusion……………………………………………………………………………....50 Chapter 5 Enhanced Hole Mobility and Low Tinv for pMOSFET by a Novel Epitaxial Si/Ge Super-lattice Channel 5.1 Motivation………………………………………………………………………………..62 5.2 Experiment Procedure…………………………………………………………………....63 5.3 Results and Discussion……………………………………………………………….…..63 5.3.1 Material Analysis of HfO2 higher-k dielectric…………………………………….….64 5.3.2 Electrical Characteristics of MOSFET………………………………………………..64 5.4 Conclusion………………………………………………………………………………..65 Chapter 6 An Ultralow EOT Ge MOS Device with Tetragonal HfO2 and High Quality HfxGeyO Interfacial Layer 6.1 Motivation………………………………………………………………………….…….71 6.2 Experiment Procedure……………………………………………………………………73 6.3 Results and Discussion……………………………………………………………….......74 6.3.1 The Electrical characteristics and thermal stability of Ge MOS ………………......…74 6.3.2 The TEM, XPS and XRD analysis of Ge MOS………………………………….……76 6.4 Conclusion………………………………………………………………………….…….80 Chapter 7 Conclusions and Future Work…………………………………..……...…………………..89 References…………………………………………………………...……………………….93

    References
    [1] G. E. Moore, “Cramming more components onto integrated circuits,”Electronics, vol. 38, pp.114-117, 1965.
    [2] Gang He, Liqiang Zhu, Zhaoqi Sun, Qing Wan, Lide Zhang, “Integrations and challenges of novel high-k gate stacks in advanced CMOS technology,” Progress in Materials Science, vol. 56, pp. 475-572, July 2011.
    [3] J. Huang, D. Heh, ^P. Sivasubramani, P. D. Kirsch, G. Bersuker, D. C. Gilmer, ^M.A. Quevedo-Lopez, M. M. Hussain, P. Majhi, P. Lysaght, H. Park, N. Goel, C. Young, C.S. Park, C. Park, M. Cruz, V. Diaz, P. Y. Hung, J. Price, H.-H. Tseng and R. Jammy, ”Gate First High-k/Metal Gate Stacks with Zero SiOx Interface Achieving EOT = 0.59 nm for 16nm Application,” in VLSI Symp. Tech. Dig., pp. 34–35, 2009.
    [4] G.S. Lujan, S. Kubicek, S. De Gendt, M. Heyns, W. Magnus and K. De Meye, “Mobility Degradation in High-K Transistors: The Role of the Charge Scattering,” ESSDERC '03. 33rd Conference on, 2003.
    [5] S. M. Sze, and J. C. Irvin, “Resistivity, Mobilities, andImpurity Levels in GaAs, Ge, and Si at 300K,” Solid State Electron, vol. 11, pp. 599-602, 1968.
    [6] Duygu Kuzum, “Interface-engineered Ge MOSFETs for Future High Performance CMOS Applications,” Stanford University, p.100, 2009.
    [7] M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, "Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors," J. Appl. Phys., vol. 97, no. 1, pp.011101, 2005.
    [8] O. Fursenko, J. Bauer, G. Lupina, P. Dudek, M. Lukosius, Ch. Wenger, P. Zaumseil “Optical properties and band gap characterization of high dielectric constant oxides,” Thin Solid Films, vol.520, pp.4532–4535, 2012.
    [9] T.V. Perevalov, M.V. Ivanov, V.A. Gritsenko, “Electronic and optical properties of hafnia polymorphs,” Microelectron. Eng.,vol. pp.1475–1477, 2011.
    [10] D. Shin, R. Arróyave, and Z.K. Liu, “Thermodynamic modeling of the Hf–Si–O system,” CALPHAD, vol.30, pp. 375–386, Dec. 2006.
    [11] D. Fischer and A. Kersch, “The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles,” Appl. Phys. Lett., vol. 92, 012908, 2008.
    [12] G Bersuker, J Barnett, N Moumen, B Foran, CD Young, P Lysaght, et al.” Interfacial Layer-Induced Mobility Degradation in High-k Transistors,” Jpn. J. Appl., vol. 43, p.7899, 2004.
    [13] G.D. Wilk, M.L. Green, M.-Y. Ho, B.W. Busch, T.W. Sorsch, F.P. Klemens, B. Brijs, R.B. van Dover, A. Kornblit, T. Gustafsson, E. Garfunkel, S. Hillenius, D. Monroe, P. Kalavade, J.M. Hergenrother, “Improved film growth and flatband voltage control of ALD HfO2 and Hf-Al-O with n+ poly-Si gates using chemical oxides and optimized post-annealing,” VLSI Technical Digest, pp. 88-89, 2002.
    [14] J.G. Yun, S.Y. Oh, B.F. Huang, H.H. Ji, Y.G. Kim, S.H. Park, H.S. Lee, D.B. Kim, U.S. Kim, H.S. Cha, S.B. Hu, J.G. Lee, S.K. Baek, H.S. Hwang, H.D. Lee, ” Highly thermal robust NiSi for nanoscale MOSFETs utilizing a novel hydrogen plasma immersion ion implantation and Ni-Co-TiN tri-layer,” IEEE Electron Dev. Lett. vol.26, p. 90, 2005.
    [15] K. Sawano, K. Toyama, R. Masutomi, T. Okamoto, N. Usami, K. Arimoto, K. Nakagawa, and Y. Shiraki, “Strain dependence of hole effective mass and scattering mechanism in strained Ge channel structures,” Appl. Phys. Lett., vol. 95, p. 122109, 2009.
    [16] K. Sawano, Y. Abe, H. Satoh, Y. Shiraki, and K. Nakagawa, “Compressive strain dependence of hole mobility in strained Ge channels,” Appl. Phys. Lett., vol. 87, p. 192102, 2005.
    [17] Y. H. Wu, J. R. Wu, and M. L. Wu, ”Thermal gate SiO2 for Ge metal-oxide-semiconductor capacitors fabricated on Si substrate,” Appl. Phys. Lett., vol. 91, p.093503, 2007.
    [18] M. Copel, M. Gribelyuk, E. J. Gusev. ”Structure and stability of ultrathin zirconium oxide layers on Si(001),” Appl. Phys. Lett., vol. 76, pp.463-8, 2000.
    [19] M. A. Nicolet, W. S. Liu, “Oxidation of GeSi,” Microelectron Eng., vol. 28, pp. 185-91, 1995.
    [20] Kilpatrick SJ, Jaccodine RJ, Thomson PE, ”A diffusional model for the oxidation behavior of Si1-xGex alloys,” J. Appl. Phys.,vol. 81, pp.8018–28, 1997.
    [21] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, “Al2O3/GeOx/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation,” Appl. Phys. Lett., vol. 98, no. 11, p. 112902, Mar. 2011.
    [22] F. Ji, J. P. Xu, P. T. Lai, C. X. Li, and J. G. Liu, “Improved interfacial properties of Ge MOS capacitor with high-κ dielectric by using TaON/GeON dual interlayer,” IEEE Electron Device Lett., vol. 32, no. 2, pp. 122–124, Feb. 2011.
    [23] Md. Shahinur Rahman, E. K. Evangelou, N. Konofaos, and A. Dimoulas, “Gate stack dielectric degradation of rare-earth oxides grown on high mobility Ge substrates,” J. Appl. Phys., vol. 112, p. 094501, 2012.
    [24] A. Delabie, F. Bellenger, M. Houssa, T. Conard, S. V. Elshocht, M. Caymax, M. Heyns, and M. Meuris, “Effective electrical passivation of Ge(100) for high-k gate dielectric layers using germanium oxide,” Appl. Phys. Lett., vol. 91, p. 082904, 2007.
    [25] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka,, and S. Takagi, “High-Mobility Ge pMOSFET With 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation,” IEEE Trans. Electr. Dev., vol. 59, p.335-341, NO. 2, 2012.
    [26] R. Zhang, P. C. Huang, J. C. Lin, N. Taoka, M. Takenaka, and S. Takagi, “High-Mobility Ge pMOSFET With 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation,” IEEE Trans. Electr. Dev., pp.1-8, 2013.
    [27] C. H. Fu, K. S. Chang-Liao, L. J. Liu, H. C. Hsieh, C. C. Lu, C. C. Li, T. K. Wang and D. W. Heh, ”Enhanced Hole Mobility and Low Tinv for pMOSFET by a Novel Epitaxial Si/Ge Superlattice Channel,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 188–190, Feb. 2012.
    [28] C. H. Fu, K. S. Chang-Liao, C. C. Li, Z. H. Ye, F. M. Hsu, T. K. Wang, Y. J. Lee, and M. J. Tsai, ’’A higher-k tetragonal HfO2 formed by chlorine plasma treatment at interfacial layer for metal-oxide-semiconductor devices,” Appl. Phys. Lett., vol. 101, p. 032105, 2012.
    [29] Y. H. Wu, M. L. Wu, Y. S. Lin, and J. R. Wu, “Electrical Characteristics of Thermal -SiON-Gated Ge p-MOSFET Formed on Si Substrate,” IEEE Electron Device Lett., vol. 30, no. 1, pp. 72-74, 2009.
    [30] A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, “Fabrication of High-Quality p-MOSFET in Ge Grown Heteroepitaxially on Si,” IEEE Electron Device Lett., vol. 26, no.5, pp. 311–313, May. 2005.
    [31] A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett., vol. 85, pp. 2815-1827, 2004.
    [32] J. Huang, P. D. Kirsch, J. Oh, S. H. Lee, J. Price, P. Majhi, H.R. Harris, D. C. Gilmer, D. Q. Kelly, P. Sivasubramani, G. Bersuker, D. Heh, C. Young, C.S. Park, Y. N. Tan, N. Goel, C. Park, P.Y. Hung, P. Lysaght, K. J. Choi, B. J. Cho, H.-H. Tseng, B .H. Lee, and R. Jammy, “Mechanisms Limiting EOT Scaling and Gate Leakage Currents of High-k/Metal Gate Stacks Directly on SiGe and a Method to Enable sub-1nm EOT,” in VLSI Symp. Tech. Dig., pp. 82–83, 2008.
    [33] J. Huang, P. D. Kirsch, J. Oh, S. H. Lee, P. Majhi, H. R. Harris, D. C. Gilmer, G. Bersuker, D. Heh, C. S. Park, C. Park, H. H. Tseng, and Raj Jammy, “Mechanisms Limiting EOT Scaling and Gate Leakage Currents of High-k/Metal Gate Stacks Directly on SiGe,” IEEE Electron Device Lett., vol. 30, no. 3, pp. 285–287, Mar. 2009.
    [34] C. H. Fu, K. S. Chang-Liao, K. H. Tsai, T. K. Wang, and Y. J. Lee, “Effects of Ge content in SiGe channel on electrical characteristics of high-k gated MOS device,” Solid-State Electronics, vol. 53, pp. 888–891, 2009.
    [35] H.M. Manasevit, I. S. Gergis, and A. B. Jones, “Electron mobility enhancement in epitaxial multilayer Si-Si1-xGex alloy films on (100) Si,” Appl. Phys. Lett., vol. 41, pp. 464-466, 1982.
    [36] G. Abstreiter, H. Brugger, and T. Wolf, “Strain-Induced Two-Dimensional Electron Gas in Seletively Doped Si/SixGe1-x Superlattices,” Phys. Rev. Lett., vol. 54, pp.2441-2444 ,1985.
    [37] A. Anders, Surf. Coat. Technol., vol. 156, pp. 3-12, 2002.
    [38] P. P. Tsai, K. S. Chang-Liao, H. Y. Kao, T. K. Wang, S. F. Huang, W. F. Tsai, C. F.Ai, ”Improved electrical characteristics of high-k gated MOS devices by nitrogen incorporation with plasma immersion ion implantation (PIII),” Microelectron Eng.vol.84, pp.2192-2195, 2007.
    [39] M. Ohring, Materials Science of Thin Films: Deposition and Structure, 2th ed. Academic Press, pp. 267-269, 2002.
    [40] H. Wong, B. Sen, B. L.Yang, A. P. Huang, P. K. Chu, ”Effects and mechanisms of nitrogen incorporation into hafnium oxide by plasma immersion implantation,” J. Vac. Sci. Technol. B, Vol. 25, pp.1853-57, 2007.
    [41] J. H. Stathis and D. J. DiMaria, “Reliability Projection for Ultra-Thin Oxides at Low Voltage,” IEDM Tech. Digest, pp. 167–170, 1998.
    [42] Y. H. Lee, K. K. Chan, M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwaveradio frequency hybrid plasma reactor,” J. Vac. Sci. Technol. A, Vol. 13, pp.596-601, 1995.
    [43] M. D. Stamate, ”Dielectric properties of TiO2 thin films deposited by a DC magnetron sputtering system,” Thin Solid Films, Vol. pp. 246-249, 2000.
    [44] K. Ramani, R.K. Singh , V. Craciun, ” Hf-O-N and HfO2 barrier layers for Hf-Ti-O gate dielectric thin films,” Microelectron Eng., vol. 85, pp. 1758–1761, 2008.
    [45] J. R. Hauser, K. Ahmed, Characterization Metrology ULSI Technology, pp. 230–235, 1998.
    [46] L.-Å. Ragnarsson, Z. Li, J. Tseng, T. Schram, E. Rohr, M. J. Cho, T. Kauerauf, T. Conard, Y. Okuno , B. Parvais, P. Absil, S. Biesemans, and T. Y. Hoffmann,“Ultra low-EOT (5Å) gate-first and gate-last high performance CMOS achieved by gate-electrode optimization,” in IEDM Tech. Dig., pp. 663–666, 2009.
    [47] R. Chau, S.Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-κ/metal-gate stack and its MOSFET characteristics,” IEEE Electron Device Lett., Vol. 25, pp.408-410, 2004.
    [48] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition,” Appl. Phys. Lett., Vol.81, p.472, 2002.
    [49] R. Nieh, R. Choi, S. Gopalan, K. Onishi, C. S. Kang, H. J. Cho, S. Krishnan, and J. C. Lee, “Evaluation of silicon surface nitridation effects on ultra-thin ZrO2 gate dielectrics,” Appl. Phys. Lett., vol. 81, p. 1663, 2002.
    [50] E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, “High-resolution depth profiling in ultrathin Al2O3 films on Si,” Appl. Phys. Lett, vol.76, p.176, 2000.
    [51] H. Arimura, N. Kitano, Y. Naitou, Y. Oku, Takashi Minami, M. Kosuda, T. Hosoi, T. Shimura, and H. Watanabe, “Excellent electrical properties of TiO2/HfSiO/SiO2 layered higher-k gate dielectrics with sub-1nm equivalent oxide thickness,” Appl. Phys. Lett., vol. 92, p.212902, 2008.
    [52] C.H. Fu, K.S. Chang-Liao, Y.A. Chang, Y.Y. Hsu, T.H. Tzeng, T.K. Wang, D.W. Heh, P.Y. Gu, and M.J. Tsai, “A low gate leakage current and equivalent oxide thickness for MOSFET with Ti/HfO2 higher-k gate dielectric,” Microelectron. Eng., vol. 88, p.1309, 2011.
    [53] C. H. Fu, K.S. Chang-Liao, H. Y. Lu, C. C. Li, T. K Wang, “Electrical characteristics of SiGe channel MOS devices with high-k/metal gate incorporated with nitrogen by plasma immersion ion implantation,” Solid State Electron, vol. 54, p.1160, 2010.
    [54] G. M. Rignanese, X. Gonze, G. Jun, K. Cho, and A. Pasquarello, “First-principles investigation of high-κ dielectrics: Comparison between the silicates and oxides of hafnium and zirconium,” Phys. Rev. B, vol. 69, p.184301, 2004.
    [55] T.V. Perevalov , M.V. Ivanov, V.A. Gritsenko, “Electronic and optical properties of hafnia polymorphs,” Microelectron. Eng., vol. 88, p.1475, 2011.
    [56] F. M. Li, B. C. Bayer, S. Hofmann, J. D. Dutson, and S. J. Wakeham, “High-k (k = 30) amorphous hafnium oxide films from high rate room temperature deposition,” Appl. Phys. Lett., vol. 98, p.252903, 2011.
    [57] S. Migita, Y. Watanabe, H. Ota, H. Ito, Y. Kamimuta, T. Nabatame, and A. Toriumi1, ” Design and demonstration of very high-k (k~50) HfO2 for ultra-scaled Si CMOS,” in VLSI Symp. Tech. Dig., p.152, 2008.
    [58] T. Wang, J. Wei, M. C. Downer, and J. G. Ekerdt, “Optical properties of La-incorporated HfO2 upon crystallization,” Appl. Phys. Lett.,vol. 98, p.122904, 2011.
    [59] D. Ishikawa, S. Kamiyama, E. Kurosawa, T.Aoyama, and Y.Nara, ” Extended Scalability of HfON/SiON Gate Stack Down to 0.57 nm Equivalent Oxide Thickness with High Carrier Mobility by Post-Deposition Annealing,” Jpn. J. Appl. Phys, vol. 48, p.04C004, 2009.
    [60] R. N. P. Vemuri, M. J. Gadre, N. D. Theodore, and T. L. Alford, “Dopant Activation in Arsenic-Implanted Si by Susceptor-Assisted Low-Temperature Microwave Anneal,” IEEE Electron Device Lett., vol. 32, p. 1122, 2011.
    [61] Y. J. Lee, Y. L. Lu, F. K. Hsueh, K. C. Huang, C. C. Wan, T. Y. Cheng, M. H. Han, J. M. Kowalski, J. E. Kowalski, D. Heh, H. T. Chuang, Y. Li, T. S. Chao, C. Y. Wu, and F. L. Yang, “3D 65nm CMOS with 320°C microwave dopant activation,” in IEDM Tech. Dig., p.31, 2009.
    [62] K. Tomida, K. Kita, and A. Toriumi, “Dielectric constant enhancement due to Si incorporation into HfO2,” Appl. Phys. Lett., vol.89, p.142902, 2006.
    [63] S. Tinck, W. Boullart and A. Bogaerts, “Investigation of etching and deposition processes of Cl2/O2/Ar inductively coupled plasmas on silicon by means of plasma–surface simulations and experiments,” J. Phys. D: Appl. Phys, vol.42, p.095204, 2009.
    [64] C. Lee, E. Cho, H. Lee, C. S. Hwang, and S. Han, “First-principles study on doping and phase stability of HfO2”, Phys. Rev. B, vol.78, p.012102, 2008.
    [65] T. Mori, M. Fujiwara, R. R. Manory, I Shimizu, T. Tanaka, and S. Miyake, “HfO2 thin films prepared by ion beam assisted deposition,” Surface and Coatings Technology, vol.169, p.528, 2003.
    [66] J. H. Jang, H. S. Jung, J. H. Kim, S. Y. Lee, C. S. Hwang, and Miyoung Kim, “Investigation of oxygen-related defects and the electrical properties of atomic layer deposited HfO2 films using electron energy-loss spectroscopy,” J. Appl. Phys., vol. 109, p.023718, 2011.
    [67] K. Akiyama, W. Wang, W. Mizubayashi, M. Ikeda, H. Ota, T. Nabatame and A. Toriumi, “Roles of oxygen vacancy in HfO2/ultra-thin SiO2 gate stacks - Comprehensive understanding of VFB roll-off,” in VLSI Symp. Tech. Dig., p.80, 2008.
    [68] S. W. Do, K. H. Bae , B. H. Song, J. S. Lee, and Y. H. Lee, “Physical and Electrical Characteristics of HfO2 /Hf Films Deposited on Silicon by Atomic Layer Deposition,” in IEEE NANO, pp. 357-360, 2007.
    [69] T. L. Duan, H. Y. Yu, L. Wu, Z. R. Wang, Y. L. Foo, and J. S. Pan, “Investigation of HfO2 high-k dielectrics electronic structure on SiO2/Si substrate by x-ray photoelectron spectroscopy”, Appl. Phys. Lett., vol.99, p.012902, 2011.
    [70] J. Tauc, Amorphous and Liquid Semiconductors, Plenum, London, p. 159, 1974.
    [71] P. W. Peacock and J. Robertson, “Band offsets and Schottky barrier heights of high dielectric constant oxides”, J. Appl. Phys., vol. 92, p.4712, 2002.
    [72] Sze S. M. and Irvin J. C., Solid State Electron, vol.11, p.599, 1968.
    [73] N. Lu, W. Bai, A. Ramirez, C. Mouli, A. Ritenour, M. L. Lee, D. Antoniadis, and D. L. Kwong, “Ge diffusion in Ge metal oxide semiconductor with chemical vapor deposition HfO2 dielectric,” Appl. Phys. Lett., vol. 87, p.051922, 2005.
    [74] C. H. Fu, K. S. Chang-Liao, T. K. Wang, W. F. Tsai, C. F. Ai, “Effects of nitrogen incorporation by plasma immersion ion implantation on electrical characteristics of high-k gated MOS devices,” Microelectron. Eng.vol. 87, pp. 2014-2018, 2010.
    [75] R. Xie and C. Zhu, “Interface engineering for high-k/Ge gate stack,” in9th ICSICT, pp. 1252–1255, 2008.
    [76] G. K. Dalapati, S. Chattopadhyay, K. S. K. Kwa, S. H. Olsen, Y. L. Tsang,R. Agaiby, A. G. O’Neill, P. Dobrosz, and S. J. Bull, “Impact of strainedSi thickness and Ge out-diffusion on gate oxide quality for strained-Si surface channel n-MOSFETs,” IEEE Trans. Electron Devices, vol. 53, pp. 1142–1152, 2006.
    [77] W. B. Chen, and A. Chin, “Interfacial layer dependence on device property of high-κ TiLaO Ge/Si N-type metal-oxide-semiconductor capacitors at small equivalent-oxide thickness,” Appl. Phys. Lett., vol. 95, p. 212105, 2009.
    [78] S. G. Lee, Y. P. Kim, H. L. Lee, B. J. Jin, J. W. Lee, Y. G. Shin, S. Choi, U-In Chung, J. T. Moon, “A comparative analysis of thermal gate oxide on strained Si/relaxed SiGe layer for reliability prediction of strained Si MOSFETs,” Mater. Sci. Semicon. vol. 8, pp. 215-218, 2005.
    [79] N. Wu, Q. Zhang, C. Zhu, CC Yeo, SJ Whang, DSH Chan, MF Li, BJ Cho, A. Chin, D.L. Kwong, A.Y. Du, C. H. Tung, and N. Balasubramanian, “Effect of surface NH3 anneal on the physical and electrical properties of HfO2 films on Ge substrate,” Appl. Phys. Lett., vol. 84, pp. 3741-3743, 2004.
    [80] He G., Fang Q, Zhang LD, “Structural and interfacial properties of high-k HfOxNy gate dielectric films,”Mater. Sci. Semicon. vol.9, pp.870-875, 2006.
    [81] W. W. Wang, T. Nabatame, Y. Shimogaki, “Effect of NH3 on the fabrication of HfN as gate-electrode using MOCVD,” Thin Solid Films, vol. 498, pp. 76-79, 2006.
    [82] J. Oh, P. Majhi, H. Lee, O. yoo, S. Lee, S. Banerjee, H. H. Tseng, and R. Jammy, “Controlled threshold voltage of high-mobility Ge pMOSFETs with high-k/metal gate on epitaxial Ge films on Si substrates,” in VLSI-TSA Symp. Tech. Dig., pp. 40–41, 2008.
    [83] H. Y. Yu, M. Ishibashi, J. H. Park, M. Kobayashi, and K. C. Saraswat, “p-Channel Ge MOSFET by Selectively Heteroepitaxially Grown Ge on Si,” IEEE Electron Device Lett., vol. 30, no. 6, pp. 675–677, Jun. 2009.
    [84] W. K. Yeh, Y. T. Chen, F. S. Huang, C. W. Hsu, C. Y. Chen, Y. K. Fang, K. J. Gan, and P. Y. Chen, “The Improvement of High-k/Metal Gate pMOSFET Performance and Reliability Using Optimized Si Cap/SiGe Channel Structure,” IEEE Trans. on Device and Materials Reliability, vol.11, pp. 7-12, no. 1, Mar, 2011.
    [85] S-H. Lee, J. Huang, P. Majhi, P.D. Kirsch, B-G. Min, C-S. Park, J. Oh, W-Y. Loh, C.-Y. Kang, B. Sassman, P.Y. Hung, S. McCoy, J. Chen, B. Wu, G. Moori, D. Heh, C. Young, G. Bersuker, H-H. Tseng, S.K. Banerjee, and R. Jammy, “Vth Variation and Strain Control of High Ge% Thin SiGe Channels by Millisecond Anneal Realizing High Performance pMOSFET beyond 16nm node,” in VLSI Symp. Tech. Dig., pp. 74–75, 2009.
    [86] J. Mitard, L. Witters, M. Garcia Bardon, P. Christie, J. Franco, A. Mercha, P. Magnone, M.Alioto, F. Crupi, L.-Å. Ragnarsson, A. Hikavyy, B. Vincent, T. Chiarella, R. Loo, J. Tseng, S. Yamaguchi, S. Takeoka, W-E. Wang, P. Absil and T. Hoffmann, “High-Mobility 0.85nm -EOT Si 0.45 Ge 0.55 -pFETs: Delivering high performance at scaled VDD,” in IEDM Tech. Dig., pp. 10.6.1 - 10.6.4, 2010.
    [87] P. Zimmerman, G. Nicholas, B. De-Jaeger, B. Kaczer, A. Stesmans, L.-A.Ragnarsson, D. P. Brunco, F. E. Leys, M. Caymax, G. Winderickx, K. Opsomer, M. Meuris, and M. M. Heyns, “High performance Ge pMOS devices using a Si-compatible process flow,” in IEDM Tech. Dig., pp. 1–4, 2006.
    [88] C. O. Chui, F. Ito, and K. C. Saraswat, “Nanoscale Germanium MOS Dielectrics—Part II: High-κ Gate Dielectrics,” IEEE Trans. Electr. Dev., vol. 53, pp. 1509-1516, 2006.
    [89] B. Duriez, G. Vellianitis, M.J.H. van Dal, G. Doornbos, R. Oxland, K. K. Bhuwalka, M. Holland, Y.S. Chang, C.H. Hsieh, K.M. Yin, Y.C. See, M. Passlack, C.H. Diaz “Scaled p-channel Ge FinFET with optimized gate stack and record performance integrated on 300mm Si wafers”, in IEDM Tech. Dig., pp. 522-525, 2013.
    [90] D. Tsoutsou, G. Apostolopoulos, S. Galata, P. Tsipas, A. Sotiropoulos, G. Mavrou, Y. Panayiotatos, A. Dimoulas ,” Stabilization of a very high-k tetragonal ZrO2 phase by direct doping with germanium”, Microelectron. Eng., vol. 86, pp.1626–1628, 2009.
    [91] Y. Oshima, M. Shandalov, Y. Sun, P. Pianetta, and P. C. McIntyre, “Hafnium oxide/germanium oxynitride gate stacks on germanium: Capacitance scaling and interface state density”, Appl. Phys. Lett., vol. 94, p. 183102, 2009.
    [92] P. Tsipas, S. N. Volkos, A. Sotiropoulos, S. F. Galata, G. Mavrou, D. Tsoutsou, Y. Panayiotatos, A. Dimoulas, C. Marchiori, and J. Fompeyrine, “Germanium- induced stabilization of a very high-k zirconia phase in ZrO2/GeO2 gate stacks”, Appl. Phys. Lett., vol. 93, p. 082904, 2008.
    [93] D. Tsoutsou, G. Apostolopoulos, S. F. Galata, P. Tsipas, A. Sotiropoulos, G. Mavrou, Y. Panayiotatos, A. Dimoulas, A. Lagoyannis, A. G. Karydas, V. Kantarelou, and S. Harissopoulos, “Stabilization of very high-k tetragonal phase in Ge-doped ZrO2 films grown by atomic oxygen beam deposition”, J. Appl. Phys., vol. 106, p. 024107, 2009.
    [94] B. Onsia, T. Conard, S. De Gendt, M. Heyns, I. Hoflijk, P. Mertens, M. Meuris, G. Raskin, S. Sioncke, I. Teerlinck, A. Theuwis, J. Van Steenbergen and C. Vinckier, “A Study of the Influence of Typical Wet Chemical Treatments on the germanium Wafer Surface,” Solid State Phenomena, vol. 103-104, pp.27-30,2005.
    [95] C. O. Chui, F. Ito, and K. C. Saraswat, “Nanoscale Germanium MOS Dielectrics—Part I: Germanium Oxynitrides”, IEEE Trans. Electr. Dev, vol. 53, pp. 1509-1516, 2006.
    [96] L. J. Liu, K. S. Chang-Liao, C. H. Fu, T. C. Chen, J. W. Cheng, C. C. Li, C. C. Lu, and T. K. Wang, "Ultralow EOT and high mobility Ge pMOSFETs with in-situ H2O plasma grown GeO2 and HfON gate dielectric," in VLSI-TSA, pp. 1-2, 2013.
    [97] C. O. Chui, S. Ramanathan, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “Germanium MOS capacitors incorporating ultrathin high-κ gate dielectric,” IEEE Electron Device Lett., vol. 23, no. 8, pp. 473–475, Aug. 2002.
    [98] C. O. Chui, H. Kim, P. C. McIntyre, and K. C. Saraswat, “Atomic layer deposition of high-κ dielectric for germanium MOS applications —substrate surface preparation,” IEEE Electron Device Lett., vol. 25, no. 5, pp. 274–276, May. 2004.
    [99] H. Matsubara, H. Kumagai, S. Sugahara, M. Takenaka, andS. Takagi, “Evaluation of SiO2/GeO2/Ge MIS interface propertiesby low temperature conductance method,” in Proc. Ext. Abstr. SSDM, pp. 18–19, 2007.
    [100] K. Martens, C. O. Chui, G. Brammertz, B. D. Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, ”On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates,” IEEE Trans. Electron Devices, vol. 55, pp. 547-556, 2008.
    [101] E. Simoen, D. H. C. Lin, A. Alian, G. Brammertz, C. Merckling, J. Mitard, and C. Claeys, "Border Traps in Ge/III-V Channel Devices: Analysis and Reliability Aspects," IEEE Trans. Device Mater. Rel., vol. 13, pp. 444-455, 2013.
    [102] P. T. Liu, C. S. Huang, Y. L. Huang, J. R. Lin, S. L. Cheng, Y. Nishi, and S. M. Sze, “Effects of postgate dielectric treatment on germanium-basedmetal-oxide- semiconductor device by supercritical fluid technology,” Appl. Phys. Lett., vol. 96, no. 11, p. 112902, Mar. 2010.
    [103] H. Matsubara, T. Sasada, M. Takenaka, and S. Takagi, “Evidence of low interface trap density in GeO2/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation,” Appl. Phys. Lett., vol. 93, no. 3, p.032104, July, 2008.
    [104] R. Xie, T. H. Phung, W. He, M. Yu, and C. Zhu, “Interface-engineered high-mobility high-k/Ge pMOSFETs with 1-nm equivalent oxide thickness,” IEEE Trans. Electron Devices, vol. 56, no. 6, pp. 1330–1337, Jun. 2009.
    [105] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces,” Appl. Phys. Lett., vol. 76, no. 16, pp. 2244-2246, Feb. 2000.
    [106] G. Liu, C. Li, H. Lai, and S. Chena, “Ge Incorporation in HfO2 Dielectric Deposited on Ge Substrate during Dry/Wet Thermal Annealing,” J. Electrochem. Soc. vol. 157, pp. 603-606, 2010.
    [107] D. Ceresoli and D. Vanderbilt, “Structural and dielectric properties ofamorphous ZrO2 and HfO2,” Phys. Rev. B., vol. 74, p.125108, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE