簡易檢索 / 詳目顯示

研究生: 蘇信政
Su, Hsin-Cheng
論文名稱: 氧化鋅奈米線的製備探討與選區成長
Fabrication and selective growth of ZnO nanowires
指導教授: 陳榮順
Chen, Rongshun
林建宏
Lin, Chien-Hung
口試委員: 陳宗麟
Chen, Tsung-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 79
中文關鍵詞: 氧化鋅奈米線微接觸微影法選區成長
外文關鍵詞: ZnO nanowires, Microcontact printing, Selective growth
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅奈米線擁有豐富的特性,因此許多的研究致力於開發其應用價值,並且有極高的潛力可取代市售產品之材料使用,其中控制成長與選區成長是可以使氧化鋅奈米線進入產品化的重要因素。
    本研究利用氣液固成長法於矽基板及藍寶石基板成功合成出氧化鋅奈米線,並探討不同製程參數對合成奈米線之影響,探討的製程參數如基板、金薄膜厚度、反應溫度、腔體壓力、基板位置以及持溫時間的影響,觀察氧化鋅奈米線的線徑、長度及形貌,整理歸納成長趨勢以及成長機制。
    而選區成長部分,則是使用選用微接觸微影法定義金薄膜圖形,隨後以氣液固法成長氧化鋅奈米線,並根據成長趨勢探討,調整製程條件以改變奈米線之外觀尺寸,即可達到選區成長及控制成長之目的。


    摘要 I 致謝 II 目錄 III 圖目錄 VI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文架構 4 第二章 基礎理論與文獻回顧 6 2.1 氧化鋅 6 2.2 氧化鋅奈米線成長方法 11 2.2.1 一維奈米結構成長方法 11 2.2.2 有機金屬化合物化學氣相沉積法成長氧化鋅奈米線 14 2.2.3 熱揮發成長法成長氧化鋅奈米線 14 2.2.4 氣液固法成長氧化鋅奈米線 17 2.3 氣液固成長機制 19 2.4 氧化鋅奈米線製備探討 21 2.5 氧化鋅奈米線的選區成長 27 2.5.1 奈米球微影術 27 2.5.2 穿透式電子顯微鏡金屬網環 29 2.5.3 陽極氧化鋁 30 2.5.4 雷射干涉微影法 32 2.6 微接觸微影法 34 第三章 實驗架構與流程 38 3.1 氧化鋅成長機台 38 3.2 氧化鋅奈米線成長製備 40 3.2.1 基板的製備 40 3.2.2 催化金屬薄膜的製備 40 3.2.3 反應物的製備 41 3.2.4 氣液固法成長氧化鋅奈米線 41 3.3 微接觸微影法 42 3.3.1 光學微影製作母印模仁 43 3.3.2 PDMS模仁製作 43 3.3.3 微接觸壓印 43 3.4 選區成長氧化鋅奈米線 45 第四章 實驗結果與討論 46 4.1 氧化鋅奈米線的成長製備 46 4.1.1 製程參數與成長結果 46 4.1.2 成長機制探討 56 4.1.3 垂直氧化鋅奈米線 60 4.2 微接觸微影法 62 4.2.1 母印模仁製作 62 4.2.2 PDMS模仁製作 63 4.2.3 微接觸壓印 64 4.3 選區成長氧化鋅奈米線 65 第五章 結論與未來工作 73 5.1 結論 73 5.2 未來工作 74 參考文獻 75

    [1] H. Hartnagel, C. Jagadish, A. K. Jain, and A. L. Dawar, Semiconducting Transparent Thin Films: Institute of Physics Publishing, 1995.
    [2] R. Wang, L. L. H. King, and A. W. Sleight, "Highly Conducting Transparent Thin Films Based on Zinc Oxide," Journal of Materials Research, vol. 11, pp. 1659-1664, 1996.
    [3] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, and W. Huang, "Growth Mechanism of Tubular ZnO Formed in Aqueous Solution," Nanotechnology, vol. 17, pp. 1740-1744, 2006.
    [4] L. Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt, "Purpose-Built Anisotropic Metal Oxide Material:  3D Highly Oriented Microrod Array of ZnO," The Journal of Physical Chemistry B, vol. 105, pp. 3350-3352, 2001.
    [5] http://en.wikipedia.org/wiki/Zinc_oxide.
    [6] (a)http://charleboisybgorlicki.blogspot.com.
    (b)http://www.myselectonline.com.
    (c)http://www.construction-chemicals.basf.com.
    (d,e)http://en.wikipedia.org/wiki.
    (f)http://www.09635.com.
    [7] J. F. Cordaro, Y. Shim, and J. E. May, "Bulk Electron Traps in Zinc Oxide Varistors," Journal of Applied Physics, vol. 60, pp. 4186-4190, 1986.
    [8] T. L. Yang, D. H. Zhang, J. Ma, H. L. Ma, and Y. Chen, "Transparent Conducting ZnO:Al Films Deposited on Organic Substrates Deposited by R.F. Magnetron-Sputtering," Thin Solid Films, vol. 326, pp. 60-62, 1998.
    [9] P. Verardi, N. Nastase, C. Gherasim, C. Ghica, M. Dinescu, R. Dinu, and C. Flueraru, "Scanning Force Microscopy and Electron Microscopy Studies of Pulsed Laser Deposited ZnO Thin Films: Application to The Bulk Acoustic Waves (BAW) Devices," Journal of Crystal Growth, vol. 197, pp. 523-528, 1999.
    [10] J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, "Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires," Nano Letters, vol. 2, pp. 279-283, 2002.
    [11] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, "Controlled Growth of ZnO Nanowires and Their Optical Properties," Advanced Functional Materials, vol. 12, pp. 323-331, 2002.
    [12] K. J. Klabunde, Nanoscale Materials in Chemistry. New York: John Wiley & Sons, Inc., 2001.
    [13] K. v. Klitzing, G. Dorda, and M. Pepper, "New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance," Physical Review Letters, vol. 45, pp. 494-497, 1980.
    [14] Q. Wan, C. L. Lin, X. B. Yu, and T. H. Wang, "Room-Temperature Hydrogen Storage Characteristics of ZnO Nanowires," Applied Physics Letters, vol. 84, pp. 124-126, 2004.
    [15] Z. L. Wang, "Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides—From Materials to Nanodevices," Advanced Materials, vol. 15, pp. 432-436, 2003.
    [16] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, "Field Emission From Well-Aligned Zinc Oxide Nanowires Grown At Low Temperature," Applied Physics Letters, vol. 81, pp. 3648-3650, 2002.
    [17] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science, vol. 292, pp. 1897-1899, 2001.
    [18] W. I. Park and G. C. Yi, "Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN," Advanced Materials, vol. 16, pp. 87-90, 2004.
    [19] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, "Nanowire Ultraviolet Photodetectors and Optical Switches," Advanced Materials, vol. 14, pp. 158-160, 2002.
    [20] W. I. Park, G. C. Yi, M. Y. Kim, and S. J. Pennycook, "Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures," Advanced Materials, vol. 15, pp. 526-529, 2003.
    [21] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, "One-Dimensional Nanostructures: Synthesis, Characterization, and Applications," Advanced Materials, vol. 15, pp. 353-389, 2003.
    [22] W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, "Metalorganic Vapor-Phase Epitaxial Growth of Vertically Well-Aligned ZnO Nanorods," Applied Physics Letters, vol. 80, pp. 4232-4234, 2002.
    [23] W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, "ZnO Nanoneedles Grown Vertically on Si Substrates by Non-Catalytic Vapor-Phase Epitaxy," Advanced Materials, vol. 14, pp. 1841-1843, 2002.
    [24] Z. W. Pan, Z. R. Dai, and Z. L. Wang, "Nanobelts of Semiconducting Oxides," Science, vol. 291, pp. 1947-1949, 2001.
    [25] Z. L. Wang, "Nanostructures of Zinc Oxide," Materials Today, vol. 7, pp. 26-33, 2004.
    [26] R. S. Wagner and W. C. Ellis, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth," Applied Physics Letters, vol. 4, pp. 89-90, 1964.
    [27] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, "Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport," Advanced Materials, vol. 13, pp. 113-116, 2001.
    [28] R. S. Wagner and W. C. Ellis, "The Vapor-Liquid-Solid Mechanism of Single Crystal Growth and Its Application to Silicon," Transactions of the Metallurgical Society of Aime, vol. 233, pp. 1053-1064, 1965.
    [29] Y. Wu and P. Yang, "Germanium Nanowire Growth via Simple Vapor Transport," Chemistry of Materials, vol. 12, pp. 605-607, 2000.
    [30] Y. Wu and P. Yang, "Direct Observation of Vapor−Liquid−Solid Nanowire Growth," Journal of the American Chemical Society, vol. 123, pp. 3165-3166, 2001.
    [31] J. Song, X. Wang, E. Riedo, and Z. L. Wang, "Systematic Study on Experimental Conditions for Large-Scale Growth of Aligned ZnO Nanwires on Nitrides," The Journal of Physical Chemistry B, vol. 109, pp. 9869-9872, 2005.
    [32] X. Wang, J. Song, C. J. Summers, J. H. Ryou, P. Li, R. D. Dupuis, and Z. L. Wang, "Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact:  A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications," The Journal of Physical Chemistry B, vol. 110, pp. 7720-7724, 2006.
    [33] S. H. Dalal, D. L. Baptista, K. B. K. Teo, R. G. Lacerda, D. A. Jefferson, and W. I. Milne, "Controllable Growth of Vertically Aligned Zinc Oxide Nanowires Using Vapour Deposition," Nanotechnology, vol. 17, pp. 4811-4818, 2006.
    [34] C. Wongchoosuk, K. Subannajui, A. Menzel, I. A. Burshtein, S. Tamir, Y. Lifshitz, and M. Zacharias, "Controlled Synthesis of ZnO Nanostructures: The Role of Source and Substrate Temperatures," The Journal of Physical Chemistry C, vol. 115, pp. 757-761, 2010.
    [35] X. Wang, C. J. Summers, and Z. L. Wang, "Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays," Nano Letters, vol. 4, pp. 423-426, 2004.
    [36] D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, "Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers," Nano Letters, vol. 6, pp. 2375-2378, 2006.
    [37] H. Fan, F. Fleischer, W. Lee, K. Nielsch, R. Scholz, M. Zacharias, U. Gosele, A. Dadgar, and A. Krost, "Patterned Growth of Aligned ZnO Nanowire Arrays on Sapphire and GaN Layers," Superlattices and Microstructures, vol. 36, pp. 95-105, 2004.
    [38] H. J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, and M. Zacharias, "Arrays of Vertically Aligned and Hexagonally Arranged ZnO Nanowires: A New Template-Directed Approach," Nanotechnology, vol. 16, pp. 913-917, 2005.
    [39] D. S. Kim, R. Ji, H. J. Fan, F. Bertram, R. Scholz, A. Dadgar, K. Nielsch, A. Krost, J. Christen, U. Gösele, and M. Zacharias, "Laser-Interference Lithography Tailored for Highly Symmetrically Arranged ZnO Nanowire Arrays," Small, vol. 3, pp. 76-80, 2007.
    [40] Y. Wei, W. Wu, R. Guo, D. Yuan, S. Das, and Z. L. Wang, "Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays," Nano Letters, vol. 10, pp. 3414-3419, 2010.
    [41] A. Kumar and G. M. Whitesides, "Features of Gold Having Micrometer to Centimeter Dimensions Can Be Formed Through A Combination of Stamping With An Elastomeric Stamp and An Alkanethiol ''Ink'' Followed by Chemical Etching," Applied Physics Letters, vol. 63, pp. 2002-2004, 1993.
    [42] D. Qin, Y. Xia, and G. M. Whitesides, "Soft Lithography for Micro- and Nanoscale Patterning," Nature Protocols, vol. 5, pp. 491-502, 2010.
    [43] A. Ulman, "Formation and Structure of Self-Assembled Monolayers," Chemical Reviews, vol. 96, pp. 1533-1554, 1996.
    [44] J. Sagiv, "Organized Monolayers by Adsorption. 1. Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces," Journal of the American Chemical Society, vol. 102, pp. 92-98, 1980.
    [45] R. Bass, "Microcontact Printing With Octadecanethiol," Applied Surface Science, vol. 226, pp. 335-340, 2004.
    [46] F. P. Zamborini and R. M. Crooks, "Corrosion Passivation of Gold by n-Alkanethiol Self-Assembled Monolayers:  Effect of Chain Length and End Group," Langmuir, vol. 14, pp. 3279-3286, 1998.
    [47] X. Wang, Y. Ding, Z. Li, J. Song, and Z. L. Wang, "Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls," The Journal of Physical Chemistry C, vol. 113, pp. 1791-1794, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE