研究生: |
劉家銘 Chia-Ming Liu |
---|---|
論文名稱: |
非線性隨機衰變試驗之設計與分析 Design and Analysis of Non-linear Degradation Test |
指導教授: |
曾勝滄
Sheng-Tsaing Tseng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 高可靠度產品 、衰變試驗 、非線性隨機衰變模型 、終止時間 、最佳衰變試驗 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對高可靠度產品之壽命推論問題,「如何On-line決定實驗最適終止時間」及「如何安排一個有效的衰變試驗來推估產品壽命」是工業界十分重視之研究課題。Tseng & Yu (1997) 及Tseng & Liao (1998) 曾分別對上述兩問題提出適當處理方法,唯因受限於分析工具,其結果僅在衰變模型為可經由函數轉換為線性 (quasi-linearization) 之條件下獲得。本文採用Tseng & Peng (2004) 所提之非線性隨機衰變模型來描述產品衰變路徑,並重新分析這兩個決策問題,具體結論如下:
(1) 利用Tseng & Yu (1997) 所提出的線上終止時間之決策程序,比較非線性衰變模型與傳統模型之終止時間,其中非線性衰變模型之終止時間較短。
(2) 在試驗測試成本不超過給定上限之前提下,以產品之 (及MTTF) 估計量的變異數達極小化為目標,建立最佳衰變試驗設計,文中以LED試驗為例,比較Tseng & Liao (1998) 及Tseng & Peng (2004) 兩模型在參數估計上的表現,其中quasi-linearization模型所求得之壽命估計值,其誤差偏高,而非線性隨機衰變模型不僅有較小的估計誤差,且對參數變動的敏感度也低。
Bernt Oksendal (1998), Stochastic Differential Equation: An Introduction with Applications, Springer, New York.
Boulanger, M. and Escorbar, L. A. (1994), “Experimental Design for a Class of Accelerated Degradation Tests,” Technometrics, 36, 260-272.
Chhikara, R. S. and Folks, L. (1989), The Inverse Gaussain Distribution, Theory, Methodology, and Applications, Marcel Dekker, Inc.
Cleveland, W. S. (1979), “Robust Locally Weighted Regression and Smoothing Sterplots,” J. Amer. Statist. Assoc., 74, 829-836.
Di Nardo, E., Nobile, A. G., Pirozzi, E. and Ricciardi, L. M. (1989), “On the Evaluation of the First-Passing-Time Probability Density via Nonsingular Integral Equation,” Advance Application Probability, 21, 20-36.
Di Nardo, E., Nobile, A. G., Pirozzi, E. and Ricciardi, L. M. (2001), “A Computational Approach to First-Passing-Time Problems for Gauss-Markov Process,” Advance Application Probability, 33, 453-482.
Doksum, K. A. and Hóyland, A. (1992), “Models for Variable-Stress Accelerated Life Testing Experiments Based on Wiener Process and The Inverse Gaussian Distribution,” Theory Probability Application, 37(1), 137-139.
Hoel, P. G.., Port, S. C. and Stone, C. J. (1972), Introduction to Stochastic Process, Waveland Press, Illinois 60070.
Lu, C. J. and Meeker, W. Q. (1993), “Using Degradation Measures to Estimate a Time-to-Failure Distribution,” Technometrics, 35, 161-174.
Meeker, W. Q. and Escobar, L. A. (1998), Statistical Methods for Reliability Data, John Wiley and Sons, New York.
Nelson, W. (1990), Accelerated Testing: Statistical Methods, Test Plans and Data Analysis, John Wiley and Sons, New York.
Tseng, S. T. and Liao, C. M. (1998), “Optimal Design for A Degradation Test,” International Journal of Operations and Quantitative Management, 4(3), 293-301.
Tseng, S. T. and Peng, C. Y. (2004), “A Stochastic Diffusion Model for LED Accelerated Degradation Data,” (submitted for publication).
Tseng, S. T., Tang, J. and Ku, I. H. (2003), “Determination of Optimal Burn-in Parameter and Residual Life for Highly Reliable Products,” Naval Research Logistics, 50(1), 1-14.
Tseng, S. T. and Yu, H. F. (1997), “A Termination Rule for Degradation Experiment,” IEEE Transactions on Reliability, 46, 130-133.
Whitmore, G. A. and Yalovsky, M. (1978), “A Normalizing Logarithmic Transformation for Inverse Gaussian Random Variables,” Technometrics, 20, 207-208.
Yu, H. F. and Tseng, S. T. (1998), “On-line Procedure for Termination an Accelerated Degradation Test,” Statistica Sinica, 8(1), 207-220.
Yu, H. F. and Tseng, S. T. (1999), “Design a Degradation Experiment,” Naval Research Logistics, 46 689-706.