研究生: |
阮慶達 Dat Khanh Nguyen |
---|---|
論文名稱: |
二氧化鈦分散水溶液中可見光光敏降解有機染料及其吸附作用探討 Role of Adsorption in Visible-Light Photosensitized Degradation of Organic Dyes in Aqueous TiO2 Dispersions |
指導教授: |
吳劍侯
Wu, Chien-Hou |
口試委員: |
董瑞安
Doong, Ruey-an 王竹方 Wang, Chu-fang 張淑閔 Chang, Sue-min |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 193 |
中文關鍵詞: | 二氧化鈦 、染料敏化過程 、可見光照射 、去除有機污染物 |
外文關鍵詞: | Titanium dioxide, Dye-sensitization process, Visible-light-irradiation, Organic pollutant removal |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化鈦(TiO2)是在相水分散體中最常用於異相光催化和光敏降解有機染料的半導體材料之一,已被證明在可見光照射下能有效淨化染料。染料在TiO2表面的吸附是光催化的第一個重要步驟。在這項研究中,比較三種光催化劑對於五種染料的吸附和光降解之間的關係:光催化劑分別爲商業ST-01(未處理的TiO2),鹼性過氧化氫處理的TiO2(AHP-TiO2)以及在AHP-TiO2中加入鐵離子懸浮液;五種染料分別為陰離子(磺基羅丹明B 和曙紅Y),陽離子(羅丹明6G和亞甲基藍)和兩性離子(羅丹明B)染料。使用不同的光催化劑與染料的pH值效應,顯示陰離子染料,傾向於酸性溶液中的吸附行為,使催化劑表面和陰離子染料間發生靜電引力。按照這個邏輯,陽離子染料喜歡鹼性條件下的吸附。除兩性離子染料外,不同pH值(2-10)均可發生吸附,但吸附量似乎不高。實驗數據顯示,所有染料/光催化劑系統均可在30分鐘內達到吸附平衡,而光催化劑對每種染料的吸附能力強烈受到pH值及其等電點的影響,進而改變靜電相互作用(陰離子染料的酸性pH值和陽離子染料的鹼性pH值)。多數的吸附過程實驗數據顯示,每種染料的個別pH值皆遵照假二階吸附動力學模型。
研究不同pH值和光催化劑用量,可了解有機染料在TiO2表面的吸附量與光降解速率常數間的關係。藉由五種染料的pH值及其吸附量的改變可釐清染料敏化降解的過程。一般來說,較高的吸附容量會擁有較高的光降解,因為大部分的分解反應會發生在光催化劑的表面。但當吸附量(qe)高於0.16 µmol.mol-1時,光降解效率與吸附量成反比。溶液中增加未處理的TiO2會導致活性位點的損失,進而產生聚集現象導致光降解效率降低,合成之AHP-TiO2,有相當優異分散性,因此仍能維持高光降解效率,且皆遵守假一級反應速率(pseudo-first-order reaction)。綜觀上述,在染料敏化光降解過程中,通過改變催化劑的性質,pH條件,催化劑用量,添加金屬離子等可提高有機染料的吸附能力,並在可見光光譜下的光催化效率有很好的表現。
TiO2 is one of the most used semiconductors for heterogenous photocatalysis and self-photosensitized degradation of organic dyes in aqueous TiO2 dispersions has been proved to be an efficient decontamination of dyes under visible light irradiation. The adsorption of dyes on the TiO2 surfaces is the first significant step for photocatalysis. In this study, the relationship between adsorption and photodegradation of dyes was tested with three photocatalysts, including commercial ST-01 (untreated-TiO2), alkaline hydrogen peroxide TiO2 (AHP-TiO2), and the addition of ferric ion into the AHP-TiO2 suspension and five dyes including anionic (sulforhodamine B and eosin Y), cationic (rhodamine 6G and methylene blue), and zwitterion (rhodamine B) dyes. The pH effect has been investigated for five dyes by using different three photocatalysts. For anionic dye, the adsorption behaviour prefers to acidic solution in order to let the electrostatic attraction take place between catalyst surface and anionic dye. To this logic, cationic dye prefers to basic condition. Except for zwitterion dye, the adsorption can be taken place in every pH (2 – 10) but the capacity seems not to be high. The experimental data showed that the adsorption equilibrium could be attained in 30 min for all dye/photocatalyst systems. The adsorption capacity of a photocatalyst for each dye is strongly dependent upon pH and its isoelectric point, varying the electrostatic interaction (acidic pH for anionic dye and basic pH for cationic dye). For most of the experimental data in adsorption process, pseudo-second order was best fitted for every pH of each dye.
The relationship between adsorbed amount of organic dyes onto TiO2 surface and photodegradation rate constant as function of pH and photocatalyst dosage was investigated. Through the data from the whole five dyes as function of pH, adsorbed amount of dye (qe, µmol.mol-1) is important for further dye-sensitized degradation. In general, the higher adsorption capacity would lead to the higher degradation because most of the decomposition reaction takes place on the surface of photocatalyst. However, when qe was higher than 0.16 µmol.mol-1, the degradation efficiency would tend to decrease in all dye systems. As for photocatalyst dosage, the increase of untreated-TiO2 into the solution will lead to the loss of active sites then come to the decease of photodegradation efficiency due to the phenomenon of aggregation. But AHP-TiO2 has been synthesized in order to overcome this issue that the photodegradation efficiency will increase when adding more AHP-TiO2 into the solution to provide more active sites for further degradation. For most of the experimental data in photocatalysis, the first-order reaction rate is considered to be appropriate to describe the degradation of compounds. In dye-sensitized photodegradation process, the adsorption capacity of organic dye which plays as a trigger must be paid much attention through the change of property of catalyst, pH condition, catalyst dosage, additional metal ions, etc to enhance the photocatalytic efficiency in the visible spectrum.
Ahmed, S.; Arshad, T.; Zada, A.; Afzal, A.; Khan, M.; Hussain, A.; Hassan, M.; Ali, M.; Xu, S. Preparation and characterization of a novel sulfonated titanium oxide incorporated chitosan nanocomposite membranes for fuel cell Application. Membranes (Basel) 2021, 11, 450.
Ai, Z.; Wu, N.; Zhang, L. A nonaqueous sol–gel route to highly water dispersible TiO2 nanocrystals with superior photocatalytic performance. Catal. Today 2014, 224, 180–187.
Al-Kahlout, A. M.; El-Ghamri, H. S.; Dahoudi, N. A.; El-Agez, T. M.; Taya, S. A.; Abdel-Latif, M. S. A comparative study: synthetic dyes as photosensitizers for dye-sensitized solar cells. Turk. J. Phys 2015, 39, 272–279.
Ali, M. H. H.; Al-Afify, A. D.; Goher, M. E. Preparation and characterization of graphene – TiO2 nanocomposite for enhanced photodegradation of Rhodamine-B dye. Egypt. J. Aquat. Res. 2018, 44, 263–270.
Alkaim, A. F.; Aljeboree, A. M.; Alrazaq, N. A.; Baqir, S. J.; Hussein, F. H.; Lilo, A. J. Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue. Asian J. Chem. 2014, 26, 8445–8448.
Alver, E.; Metin, A. U.; Brouers, F. Methylene blue adsorption on magnetic alginate/rice husk bio-composite. Int. J. Biol. Macromol. 2020, 154, 104–113.
Alves, F. H. D. O.; Araújo, O. A.; De Oliveira, A. C.; Garg, V. K. Preparation and characterization of PAni(CA)/Magnetic iron oxide hybrids and evaluation in adsorption/photodegradation of blue methylene dye. Surf. Interfaces 2021, 23, 100954.
Andrew Mills; Belghazi, A.; Davies, R. H.; Worsley, D.; Morris, S. A kinetic study of the bleaching of rhodamine 6G photosensitized by titanium dioxide. J. Photochem. Photobiol. A. 1994, 79, 131–139.
Andronic, L.; Isac, L.; Cazan, C.; Enesca, A. Simultaneous adsorption and photocatalysis processes based on ternary tio2–cuxs–fly ash hetero-structures. Appl. Sci. 2020, 10, 8070.
Arabpour, A.; Dan, S.; Hashemipour, H. Preparation and optimization of novel graphene oxide and adsorption isotherm study of methylene blue. Arab. J. Chem. 2021, 14, 103003.
Asiri, A. M.; Al-Amoudi, M. S.; Al-Talhi, T. A.; Al-Talhi, A. D. Photodegradation of rhodamine 6G and phenol red by nanosized TiO2 under solar irradiation. J. Saudi Chem. Soc 2011, 15, 121–128.
Ayouch, I.; Kassem, I.; Kassab, Z.; Barrak, I.; Barhoun, A.; Jacquemin, J.; Draoui, K.; Achaby, M. E. Crosslinked carboxymethyl cellulose-hydroxyethyl cellulose hydrogel films for adsorption of cadmium and methylene blue from aqueous solutions. Surf. Interfaces 2021, 24, 101124.
Azizian, S. Kinetic models of sorption: a theoretical analysis. J. Colloid Interface Sci. 2004, 276, 47–52.
Babaeivelni, K.; Khodadoust, A. P. Adsorption of fluoride onto crystalline titanium dioxide: effect of pH, ionic strength, and co-existing ions. J. Colloid Interface Sci. 2013, 394, 419–427.
Bahadur, L.; Srivastava, P. Efficient photon-to-electron conversion with rhodamine 6G-sensitized nanocrystalline n-ZnO thin film electrodes in acetonitrile solution. Sol. Energy Mater Sol. Cells. 2003, 79, 235–248.
Barzan, M.; Razzaghi, D.; Shahrokhababdi, H. Experimental and theoretical investigations of the concentration-dependent linear optical properties of Rhodamine 6G in the presence of Gold nanorods. Optik 2020, 222, 165375.
Baviskar, P.; Ennaoui, A.; Sankapal, B. Influence of processing parameters on chemically grown ZnO films with low cost Eosin-Y dye towards efficient dye sensitized solar cell. Solar Energy 2014, 105, 445–454.
Behnajady, M. A.; Modirshahla, N.; Shokri, M. Photodestruction of acid orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters. Chemosphere 2004, 55, 129–134.
Bellin, J. S.; Yankus, C. A. Influence of dye binding on the sensitized photooxidation of amino acids. Arch. Biochem. Biophys. 1968, 123, 18–28.
Cai, J.; Hu, S.; Xiang, J.; Zhang, H.; Men, D. The effect of graphitized carbon on the adsorption and photocatalytic degradation of methylene blue over TiO2/C composites. RSC Advances 2020, 10, 40830–40842.
Calvache-Muñoz; Jazmín; Rodríguez-Páez, J. E. Removal of rhodamine 6G in the absence of UV radiation using ceria nanoparticles (CeO2-NPs). J. Environ. Chem. Eng. 2020, 8, 103518.
Carpineti, M.; Ferri, F.; Giglio, M.; Paganini, E.; Perini, U. Salt-induced fast aggregation of polystyrene latex. Phys. Rev. A 1990, 42, 7347–7354.
Caruso, R. A.; Antonietti, M.; Giersig, M.; Hentze, H.-P.; Jia, J. Modification of TiO2 network structures using a polymer gel coating technique. Chem. Mater. 2001, 13, 1114–1123.
Cernigoj, U.; Stangar, U. L.; Jirkovsky, J. Effect of dissolved ozone or ferric ions on photodegradation of thiacloprid in presence of different TiO2 catalysts. J. Hazard. Mater. 2010, 177, 399–406.
Chatterjee, S.; Chatterjee, S.; Chatterjee, B. P.; Das, A. R.; Guha, A. K. Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads. J. Colloid Interface Sci. 2005, 288, 30–35.
Chen, C.; Li, X.; Ma, W.; Zhao, J.; Hidaka, H.; Serpone, N. Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation a probe for the interfacial electron transfer process and reaction mechanism. J. Phys. Chem. B. 2002, 106, 318–324.
Chen, S.; Liu, Y. Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere 2007, 67, 1010–1017.
De Oliveira, C. P. M.; Lage, A. L. A.; Martins, D. C. D. S.; Mohallem, N. D. S.; Viana, M. M. High surface area TiO2 nanoparticles: impact of carboxylporphyrin sensitizers in the photocatalytic activity. Surf. Interfaces 2020, 21, 100774.
Diaz-Angulo, J.; Arce-Sarria, A.; Mueses, M.; Hernandez-Ramirez, A.; Machuca-Martinez, F. Analysis of two dye-sensitized methods for improving the sunlight absorption of TiO2 using CPC photoreactor at pilot scale. Mater. Sci. Semicond. Process. 2019, 103, 104640.
Diaz-Angulo, J.; Lara-Ramos, J.; Mueses, M.; Hernández-Ramírez, A.; Li Puma, G.; Machuca-Martínez, F. Enhancement of the oxidative removal of diclofenac and of the TiO2 rate of photon absorption in dye-sensitized solar pilot scale CPC photocatalytic reactors. Chem. Eng. J. 2020, 381, 122520.
Ding, F.; Ren, P.; Wang, G.; Wu, S.; Du, Y.; Zou, X. Hollow cellulose-carbon nanotubes composite beads with aligned porous structure for fast methylene blue adsorption. Int. J. Biol. Macromol. 2021, 182, 750–759.
Ding, H.; Sun, H.; Shan, Y. Preparation and characterization of mesoporous SBA-15 supported dye-sensitized TiO2 photocatalyst. J. Photochem. Photobiol. A. 2005, 169, 101–107.
Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146.
Du, W. L.; Xu, Z. R.; Han, X. Y.; Xu, Y. L.; Miao, Z. G. Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye. J. Hazard. Mater. 2008, 153, 152–156.
Echabbi, F.; Hamlich, M.; Harkati, S.; Jouali, A.; Tahiri, S.; Lazar, S.; Lakhmiri, R.; Safi, M. Photocatalytic degradation of methylene blue by the use of titanium-doped Calcined Mussel Shells CMS/TiO2. J. Environ. Chem. Eng. 2019, 7, 103293.
Estrada-Cabrera, E.; Torres-Ferrer, L. R.; Luna-Barcenas, G.; Ramirez-Bon, R. Cellulose dialysis membrane containing raw clinoptilolite enhances the removal of Rhodamine 6G from aqueous solutions. Microporous Mesoporous Mater. 2021, 321, 111113.
Fox, R. O., Computational Models for Turbulent Reacting Flows. Cambridge University, 2003.
Frank, S. N.; Bard, A. J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc. 1977, 99, 303–304.
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
Gajović, A.; Stubičar, M.; Ivanda, M.; Furić, K. Raman spectroscopy of ball-milled TiO2. J. Mol. Struct. 2001, 563–564, 315–320.
Gemeay, A. H. Adsorption characteristics and the kinetics of the cation exchange of rhodamine-6G with Na+-montmorillonite. J. Colloid Interface Sci. 2002, 251, 235–241.
Ghasemi, Z.; Abdi, V.; Sourinejad, I. Green fabrication of Ag/AgCl@TiO2 superior plasmonic nanocomposite: biosynthesis, characterization and photocatalytic activity under sunlight. J. Alloys Compd. 2020, 841, 155593.
Gnanaprakasam, A.; Sivakumar, V. M.; Thirumarimurugan, M. Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review. Indian J. Eng. Mater. Sci. 2015, 2015, 1–16.
Gollakota, A. R. K.; Volli, V.; Munagapati, V. S.; Wen, J.-C.; Shu, C.-M. Synthesis of novel ZSM-22 zeolite from Taiwanese coal fly ash for the selective separation of rhodamine 6G. J. Mater. Res. Technol. 2020, 9, 15381–15393.
Gomez, R.; Salvador, P. Photovoltage dependence on film thickness and type of illumination in nanoporous thin film electrodes according to a simple diffusion model. Sol. Energy Mater. Sol. Cells 2005, 88, 377–388.
Gomri, F.; Finqueneisel, G.; Zimny, T.; Korili, S. A.; Gil, A.; Boutahala, M. Adsorption of rhodamine 6G and humic acids on composite bentonite–alginate in single and binary systems. Appl. Water Sci. 2018, 8, 156.
Goulart, S.; Jaramillo Nieves, L. J.; Dal Bó, A. G.; Bernardin, A. M. Sensitization of TiO2 nanoparticles with natural dyes extracts for photocatalytic activity under visible light. Dyes Pigm. 2020, 182, 108654.
Grzechulska, J.; Morawski, A. W. Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Appl. Catal. B. 2002, 36, 45–51.
Gupta, A. K.; Pal, A.; Sahoo, C. Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO2. Dyes Pigm 2006, 69, 224–232.
Haggerty, J. E. S.; Schelhas, L. T.; Kitchaev, D. A.; Mangum, J. S.; Garten, L. M.; Sun, W.; Stone, K. H.; Perkins, J. D.; Toney, M. F.; Ceder, G.; Ginley, D. S.; Gorman, B. P.; Tate, J. High-fraction brookite films from amorphous precursors. Sci. Rep. 2017, 7, 15232.
Han, X.; Wang, Y.; Zhang, N.; Meng, J.; Li, Y.; Liang, J. Facile synthesis of mesoporous silica derived from iron ore tailings for efficient adsorption of methylene blue. Colloids Surf. A Physicochem. Eng. Asp. 2021, 617, 126391.
Haroon, M.; Wang, L.; Yu, H.; Ullah, R. S.; Zain Ul, A.; Khan, R. U.; Chen, Q.; Liu, J. Synthesis of carboxymethyl starch-g-polyvinylpyrolidones and their properties for the adsorption of Rhodamine 6G and ammonia. Carbohydr. Polym. 2018, 186, 150–158.
Hashimoto, K.; Irie, H.; Fujishima, A. A huge of building-up constructive papers have also been published regarding TiO2 photocatalyst. Jpn. J. Appl. Phys. 2005, 44, 8269–8285.
Hatchard, C. G.; Parker, C. A. A new sensitive chemical actinometer potassium ferrioxalate as a standard chemical actinometer. Proc. R. Soc. London A 1956, 235, 518–536.
Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465.
Ho, Y. S.; Ng, J. C. Y.; McKay, G. Kinetics of pollutant sorption by biosorbents review. Sep. Purif. Methods 2000, 29, 189–232.
Hotze, E. M.; Phenrat, T.; Lowry, G. V. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 2010, 39, 1909–1924.
Huang, X.-Y.; Bin, J.-P.; Bu, H.-T.; Jiang, G.-B.; Zeng, M.-H. Removal of anionic dye eosin Y from aqueous solution using ethylenediamine modified chitosan. Carbohydr. Polym. 2011, 84, 1350–1356.
Hubbe, M. A.; Rojas, O. R. Colloidal stability and aggregation of lignocellulosic materials in aqueous suspension: A review. BioResources 2008, 3, 1419–1491.
Jayaraj, S. K.; Thangadurai, P. Surface decorated V2O5 nanorods with Pt nanoparticles for enriched visible light photocatalytic performance for the photodegradation of Rh-6G. J. Mol. Liq. 2020, 319, 114368.
Ji, Y.; Xu, F.; Wei, W.; Gao, H.; Zhang, K.; Zhang, G.; Xu, Y.; Zhang, P. Efficient and fast adsorption of methylene blue dye onto a nanosheet MFI zeolite. J. Solid State Chem. 2021, 295, 121917.
Jing, J.; Feng, J.; Li, W.; Yu, W. W. Low-temperature synthesis of water-dispersible anatase titanium dioxide nanoparticles for photocatalysis. J. Colloid Interface Sci. 2013, 396, 90–94.
Krishnan, S.; Shriwastav, A. Application of TiO2 nanoparticles sensitized with natural chlorophyll pigments as catalyst for visible light photocatalytic degradation of methylene blue. J. Environ. Chem. Eng. 2021, 9, 104699.
Lagergren, S. Y. Zur Theorie der sogenannten Adsorption gel-oster Stoffe. K. vet. akad. handl 1898, 24, 1–39.
Latreille, P.-L.; Alsharif, S.; Gourgas, O.; Tehrani, S. F.; Roullin, V. G.; Banquy, X. Release kinetics from nano-inclusion-based and affinity-based hydrogels: A comparative study. Colloids Surf. A: Physicochem. Eng. Asp. 2017, 529, 739–749.
Lawal, I. A.; Dolla, T. H.; Pruessner, K.; Ndungu, P. Synthesis and characterization of deep eutectic solvent functionalized CNT/ZnCo2O4 nanostructure: Kinetics, isotherm and regenerative studies on Eosin Y adsorption. J. Environ. Chem. Eng. 2019, 7, 102877.
Laysandra, L.; Sari, M.; Soetaredjo, F. E.; Foe, K.; Putro, J. N.; Kurniawan, A.; Ju, Y. H.; Ismadji, S. Adsorption and photocatalytic performance of bentonite-titanium dioxide composites for methylene blue and rhodamine B decoloration. Heliyon 2017, 3, 00488.
Lee, C. H.; Park, H. B.; Park, C. H.; Lee, S. Y.; Kim, J. Y.; McGrath, J. E.; Lee, Y. M. Preparation of high-performance polymer electrolyte nanocomposites through nanoscale silica particle dispersion. J. Power Sources 2010, 195, 1325–1332.
Li, J.; E, Y.; Lian, L.; Ma, W. Visible light induced dye-sensitized photocatalytic hydrogen production over platinized TiO2 derived from decomposition of platinum complex precursor. Int. J. Hydrog. Energy 2013, 38, 10746–10753.
Li, J.; Suyoulema; Wang, W.; Sarina A study of photodegradation of sulforhodamine B on Au–TiO2/bentonite under UV and visible light irradiation. Solid State Sci. 2009, 11, 2037–2043.
Li, S. Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylose. Bioresour. Technol. 2010, 101, 2197–2020.
Li, Y.; Xie, C.; Peng, S.; Lu, G.; Li, S. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. J. Mol. Catal. A Chem. 2008, 282, 117–123.
Liu, G.; Zhao, J.; Hidaka, H. ESR spin-trapping detection of radical intermediates in the TiO2-assisted photo-oxidation of sulforhodamine B under visible irradiation. J. Photochem. Photobiol. A. 2000, 133, 83–88.
Liu, P.; Duan, W.; Liang, W.; Li, X. Thermokinetic studies of the groups on TiO2 surface. Surf. Interface Anal. 2009, 41, 394–398.
Liu, W.; He, T.; Wang, Y.; Ning, G.; Xu, Z.; Chen, X.; Hu, X.; Wu, Y.; Zhao, Y. Synergistic adsorption-photocatalytic degradation effect and norfloxacin mechanism of ZnO/ZnS@BC under UV-light irradiation. Sci. Rep. 2020, 10, 11903.
Macedo, E. R.; De Boni, L.; Misoguti, L.; Mendonça, C. R.; de Oliveira, H. P. Dye aggregation and influence of pre-micelles on heterogeneous catalysis: A photophysical approach. Colloids Surf. A Physicochem. Eng. Asp. 2011, 392, 76–82.
Majek, M.; Filace, F.; von Wangelin, A. J. On the mechanism of photocatalytic reactions with eosin Y. Beilstein J. Org. Chem. 2014, 10, 981–989.
Makarova, O. V.; Rajh, T.; Thurnauer, M. C. Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environ. Sci. Technol. 2000, 34, 4797–4803.
Mathew, A.; Parambadath, S.; Barnabas, M. J.; Song, H. J.; Kim, J.-S.; Park, S. S.; Ha, C.-S. Rhodamine 6G assisted adsorption of metanil yellow over succinamic acid functionalized MCM-41. Dyes Pigm. 2016, 131, 177–185.
McClurg, R. B. Nucleation rate and primary particle size distribution. J. Chem. Phys 2002, 117, 5328–5336.
Milanova, D.; Chambers, R. D.; Bahga, S. S.; Santiago, J. G. Electrophoretic mobility measurements of fluorescent dyes using on-chip capillary electrophoresis. Electrophoresis 2011, 32, 3286–3294.
Mohagheghian, A.; Karimi, S.-A.; Yang, J.-K.; Shirzad-Siboni, M. Photocatalytic degradation of a textile dye by illuminated tungsten oxide nanopowder. J. Adv. Oxid. Technol. 2015, 18, 61–68.
Moser, J.-E.; Kalyanasundaram, K., Dynamics of interfacial and surface electron transfer processes. Dye-Sensitized Solar Cells 2010, 401–456.
Nakhli, A.; Bergaoui, M.; Toumi, K. H.; Khalfaoui, M.; Benguerba, Y.; Balsamo, M.; Soetaredjo, F. E.; Ismadji, S.; Ernst, B.; Erto, A. Molecular insights through computational modeling of methylene blue adsorption onto low-cost adsorbents derived from natural materials: A multi-model's approach. Comput. Chem. Eng. 2020, 140, 106965.
Nawrocka, A.; Krawczyk, S. Electronic excited state of alizarin dye adsorbed on TiO2 nanoparticles a study by electroabsorption (stark effect) spectroscopy. J. Phys. Chem. C 2008, 112, 10233–10241.
Nie, L.; Yu, J.; Li, X.; Cheng, B.; Liu, G.; Jaroniec, M. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environ. Sci. Technol. 2013, 47, 2777–2783.
Ocando, C.; Tercjak, A.; Mondragon, I. Surfactant addition effects on dispersion and microdomain orientation in SBS triblock copolymer/alumina nanoparticle composites. Eur. Polym. J. 2011, 47, 1240–1249.
Ong, S.-T.; Keng, P.-S.; Lee, W.-N.; Ha, S.-T.; Hung, Y.-T. Dye Waste Treatment. Water 2011, 3, 157–176.
Orfao, J. J.; Silva, A. I.; Pereira, J. C.; Barata, S. A.; Fonseca, I. M.; Faria, P. C.; Pereira, M. F. Adsorption of a reactive dye on chemically modified activated carbons--influence of pH. J. Colloid Interface Sci. 2006, 296, 480–489.
Ortiz-Bustos, J.; Hierro, I. d.; Sánchez-Ruiz, A.; García-Martínez, J. C.; Pérez, Y. Tuning of type-I and type-II mechanisms for visible light degradation in tris(styryl)benzene-sensitized TiO2 nanoparticles. Dyes Pigm 2021, 184, 108802.
Oualid, H. A.; Abdellaoui, Y.; Laabd, M.; El Ouardi, M.; Brahmi, Y.; Iazza, M.; Abou Oualid, J. Eco-efficient green seaweed codium decorticatum biosorbent for textile dyes: characterization, mechanism, recyclability, and rsm optimization. ACS Omega 2020, 5, 22192–22207.
Pan, L.; Zou, J. J.; Zhang, X.; Wang, L. Water-mediated promotion of dye sensitization of TiO2 under visible light. J. Am. Chem. Soc. 2011, 133, 10000–10002.
Peralta, M. d. L. R.; Sánchez-Cantú, M.; Puente-López, E.; Rubio-Rosas, E.; Tzompantzi, F. Evaluation of calcium oxide in rhodamine 6G photodegradation. Catal. Today 2018, 305, 75–81.
Phongamwong, T.; Chareonpanich, M.; Limtrakul, J. Role of chlorophyll in Spirulina on photocatalytic activity of CO2 reduction under visible light over modified N-doped TiO2 photocatalysts. Appl. Catal. B. 2015, 168–169, 114–124.
Pranami, G. 2009 Understanding Nanoparticle Aggregation. Iowa State University,
Pu, S.; Zhu, R.; Ma, H.; Deng, D.; Pei, X.; Qi, F.; Chu, W. Facile in-situ design strategy to disperse TiO2 nanoparticles on graphene for the enhanced photocatalytic degradation of rhodamine 6G. Appl. Catal. B. 2017, 218, 208–219.
Rafiq, A.; Ikram, M.; Ali, S.; Niaz, F.; Khan, M.; Khan, Q.; Maqbool, M. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J. Ind. Eng. Chem. 2021, 97, 111–128.
Rahman, K. H.; Kar, A. K. Effect of band gap variation and sensitization process of polyaniline (PANI)-TiO2 p-n heterojunction photocatalysts on the enhancement of photocatalytic degradation of toxic methylene blue with UV irradiation. J. Environ. Chem. Eng. 2020, 8, 104181.
Ramesha, G. K.; Kumara, A. V.; Muralidhara, H. B.; Sampath, S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 2011, 361, 270–277.
Rathour, R. K. S.; Bhattacharya, J.; Mukherjee, A. β-Cyclodextrin conjugated graphene oxide: A regenerative adsorbent for cadmium and methylene blue. J. Mol. Liq. 2019, 282, 606–616.
Ray, K.; Nakahara, H. Adsorption of sulforhodamine dyes in cationic langmuir−blodgett films spectroscopic and structural studies. J. Phys. Chem. B 2002, 106, 92–100.
Reyes-Miranda, J.; Garcia-Murillo, A.; Garrido-Hernández, A.; Carrillo-Romo, F. d. J. Fast and mild alkaline solvothermal synthesis of nanostructured flower-like Na2Ti3O7 and its methylene blue adsorption capacity. Mater. Lett. 2021, 292, 129589.
Richardson, S. D.; Willson, C. S.; Rusch, K. A. Use of rhodamine water tracer in the marshland upwelling system. Ground Water 2004, 42, 678–688.
Ruba, N.; Prakash, P.; Sowmya, S.; Janarthanan, B.; Nagamani Prabu, A.; Chandrasekaran, J. Dye-sensitized solar cell using eosin Y dye in various concentrations. Mater. Today: Proc. 2021, 45, 2371–2374.
Saepurahman; Abdullah, M. A.; Chong, F. K. Dual-effects of adsorption and photodegradation of methylene blue by tungsten-loaded titanium dioxide. Chem. Eng. J. 2010, 158, 418–425.
Saha, J.; Datta Roy, A.; Dey, D.; Chakraborty, S.; Bhattacharjee, D.; Paul, P. K.; Hussain, S. A. Investigation of fluorescence resonance energy transfer between fluorescein and rhodamine 6G. Spectrochim Acta A Mol. Biomol. Spectrosc. 2015, 149, 143–149.
Sahito, I. A.; Sun, K. C.; Lee, W.; Kim, J. P.; Jeong, S. H. Graphene nanosheets as counter electrode with phenoxazine dye for efficient dye sensitized solar cell. Org. Electron. 2017, 44, 32–41.
Schmidt, M.; Steinemann, S. G. XPS studies of amino acids adsorbed on titanium dioxide surfaces. Fresenius J. Anal. Chem. 1991, 341, 412–415.
Seera, S. D. K.; Kundu, D.; Gami, P.; Naik, P. K.; Banerjee, T. Synthesis and characterization of xylan-gelatin cross-linked reusable hydrogel for the adsorption of methylene blue. Carbohydr. Polym. 2021, 256, 117520.
Sen, S.; M. L. Ram, S. R.; Sarkar, B. K. The structural transformation of anatase TiO2 by high-energy vibrational ball milling. J. Mater. Res. 1999, 14, 841–848.
Shelar, S. G.; Mahajan, V. K.; Patil, S. P.; Sonawane, G. H. Enhancement of visible light induced photocatalytic degradation of Eosin-Y by using TiO2 and Ag doped TiO2 nano catalyst. J. Mater. Environ. Sci. 2019, 10, 431–441.
Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263.
Singh, N. B.; Susan, A. B. H., Polymer nanocomposites for water treatments. In Polymer-based Nanocomposites for Energy and Environmental Applications, 2018, 569–595.
Slyusarenko, N.; Gerasimova, M.; Atamanova, M.; Plotnikov, A.; Slyusareva, E. Adsorption of eosin Y on polyelectrolyte complexes based on chitosan and arabinogalactan sulfate. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125731.
Slyusareva, E. A.; Gerasimova, M. A. pH-dependence of the absorption and fluorescent properties of fluorone dyes in aqueous solutions. Russ. Phys. J. 2014, 56, 1370–1377.
Soria, J.; Sanz, J.; Sobrados, I.; Coronado, J. M.; D, M.; Herna´ndez-Alonso; Fresno, F. Water-hydroxyl interactions on small anatase nanoparticles prepared by the hydrothermal route. J. Phys. Chem. C 2010, 114, 16534–16540.
Subramaniam, M. N.; Goh, P. S.; Abdullah, N.; Lau, W. J.; Ng, B. C.; Ismail, A. F. Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method. J. Nanopart. Res. 2017, 19, 220.
Sugihara, M. N.; Moeller, D.; Paul, T.; Strathmann, T. J. TiO2-photocatalyzed transformation of the recalcitrant X-ray contrast agent diatrizoate. Appl. Catal. B: Environ. 2013, 129, 114–122.
Sun, J.; Guo, L. H.; Zhang, H.; Zhao, L. UV irradiation induced transformation of TiO2 nanoparticles in water: aggregation and photoreactivity. Environ. Sci. Technol. 2014, 48, 11962–11968.
Suwunwong, T.; Patho, P.; Choto, P.; Phoungthong, K. Enhancement the rhodamine 6G adsorption property on Fe3O4-composited biochar derived from rice husk. Mater. Res. Express 2020, 7, 025511.
Suzuki, T. S.; Sakka, Y.; Nakano, K.; Hiraga, K. Effect of ultrasonication on the microstructure and tensile elongation of zirconia-dispersed alumina ceramics prepared by colloidal processing. J. Am. Ceram. Soc. 2001, 84, 2132–2134.
Sykam, N.; Jayram, N. D.; Mohan Rao, G. Exfoliation of graphite as flexible SERS substrate with high dye adsorption capacity for Rhodamine 6G. Appl. Surf. Sci. 2019, 471, 375–386.
Thakur, S.; Arotiba, O. A. Synthesis, swelling and adsorption studies of a pH-responsive sodium alginate–poly(acrylic acid) superabsorbent hydrogel. Polym. 2018, 75, 4587–4606.
Tichapondwa, S. M.; Newman, J. P.; Kubheka, O. Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Phys. Chem. Earth 2020, 118–119, 102900.
Tyona, M. D.; Jambure, S. B.; Lokhande, C. D.; Banpurkar, A. G.; Osuji, R. U.; Ezema, F. I. Dye-sensitized solar cells based on Al-doped ZnO photoelectrodes sensitized with rhodamine. Mater. Lett. 2018, 220, 281–284.
Wang, J.-y.; Yu, J.-X.; Liu, Z.-H.; He, Z.-K.; Cai, R.-X. A simple new way to prepare anatase TiO2 hydrosol with high photocatalytic activity. Semicond. Sci. Technol. 2005, 20, 36–39.
Wang, J.; Liu, Z.; Cai, R. A new role for Fe3+ in TiO2 hydrosol accelerated photodegradation of dyes under visible light. Environ. Sci. Technol. 2008, 42, 5759–5764.
Wang, Q.; Chen, C.; Zhao, D.; Ma, W.; Zhao, J. Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation. Langmuir 2008, 24, 7338–7345.
Wang, Z.; Zang, X.-F.; Shen, H.; Shen, C.; Ye, X.; Li, Q.; Quan, Y.-Y.; Ye, F.; Huang, Z.-S. Dithienopyrrolobenzothiadiazole-based metal-free organic dyes with double anchors and thiophene spacers for efficient dye-sensitized solar cells. Solar Energy 2020, 208, 1103–1113.
Watanabe, M. Dye-sensitized photocatalyst for effective water splitting catalyst. Sci. Technol. Adv. Mater. 2017, 18, 705–723.
Wei, L.; Shifu, C.; Wei, Z.; Sujuan, Z. Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase. J. Hazard. Mater. 2009, 164, 154–160.
Wu, C.-Y.; Lee, Y.-L.; Lo, Y.-S.; Lin, C.-J.; Wu, C.-H. Thickness-dependent photocatalytic performance of nanocrystalline TiO2 thin films prepared by sol–gel spin coating. Appl. Surf. Sci. 2013, 280, 737–744.
Wu, C.-Y.; Tu, K.-J.; Lo, Y.-S.; Pang, Y. L.; Wu, C.-H. Alkaline hydrogen peroxide treatment for TiO2 nanoparticles with superior water-dispersibility and visible-light photocatalytic activity. Mater. Chem. Phys. 2016, 181, 82–89.
Wu, L.; Zhong, X.; Bian, C.; Zhang, Y.; Huang, Y.; Zuo, H. Fluorescence enhancement comparisons between two rhodamine dyes in two surfactants. Optik 2019, 176, 626–629.
Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N. Photoassisted degradation of dye pollutants. v. self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B. 1998, 102, 5845–5851.
Yaguchi, K.; Furube, A.; Katoh, R. Aggregate formation of eosin-Y adsorbed on nanocrystalline TiO2 films. Chem. Phys. Lett. 2012, 551, 96–100.
Yang, L.; Hu, J.; He, L.; Tang, J.; Zhou, Y.; Li, J.; Ding, K. One-pot synthesis of multifunctional magnetic N-doped graphene composite for SERS detection, adsorption separation and photocatalytic degradation of Rhodamine 6G. Chem. Eng. J. 2017, 327, 694–704.
Yang, Q.; Troczynski, T. Dispersion of alumina and silicon carbide powders in alumina sol. J. Am. Ceram. Soc. 1999, 82, 1928–1930.
Yao, X.; Tan, S.; Huang, Z.; Jiang, D. Dispersion of talc particles in a silica sol. Mater. Lett. 2005, 59, 100–104.
Yin, B.; Hakkarainen, M. Core–shell nanoparticle–plasticizers for design of high-performance polymeric materials with improved stiffness and toughness. J. Mater. Chem. 2011, 21, 8670.
Ying, M.; Li, Z.; Kou, J.; Zou, Z. Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/eosin Y/rhodamine B system. Environ. Sci. Technol. 2009, 43, 8361–8366.
Yu, J.; Grossiord, N.; Koning, C. E.; Loos, J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 2007, 45, 618–623.
Zhang, K.; Xu, W.; Li, X.; Zheng, S.; Xu, G. Effect of dopant concentration on photocatalytic activity of TiO2 film doped by Mn non-uniformly. Open Chem. 2006, 4, 234–245.
Zhang, R.; Hummelgård, M.; Lv, G.; Olin, H. Real time monitoring of the drug release of rhodamine B on graphene oxide. Carbon 2011, 49, 1126–1132.
Zhang, W. Nanoparticle aggregation: principles and modeling. Adv. Exp. Med. Biol. 2014, 811, 19–43.
Zhao, D.; Chen, C.; Wang, Y.; Ma, W.; Zhao, J.; Rajh, T.; Zang, L. Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2 structure, interaction, and interfacial electron transfer. Environ. Sci. Technol. 2008, 42, 308–314.
Zheng, Z.; Liu, H.; Ye, J.; Zhao, J.; Waclawik, E. R.; Zhu, H. Structure and contribution to photocatalytic activity of the interfaces in nanofibers with mixed anatase and TiO2(B) phases. J. Mol. Catal. A Chem. 2010, 316, 75–82.
Zhou, Y.; Zhang, M.; Wang, X.; Huang, Q.; Min, Y.; Ma, T.; Niu, J. Removal of crystal violet by a novel cellulose-based adsorbent: comparison with native cellulose. Ind. Eng. Chem. Res. 2014, 53, 5498–5506.
Zhu, S.; Wang, D. Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7, 1700841.