研究生: |
林政毅 Lin, Cheng-Yi |
---|---|
論文名稱: |
修飾之氮化銦離子感測場效電晶體對DNA雜合反應偵測 Functionalized InN Ion Sensitive Field Effect Transistor for DNA Hybridization Detection |
指導教授: |
葉哲良
Yeh, J. Andrew |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 93 |
中文關鍵詞: | 氮化銦離子感測場效應電晶體 、DNA 雜合反應 、分子氣相沉積 、3-硫醇基矽丙烷 、生物分子感測器 |
外文關鍵詞: | InN ISFET, DNA Hybridization, Molecular Vapor Deposition (MVD), 3-mercaptopropyltrimethoxysilane (MPTMS), Biosensors |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超薄膜 (~10 nm) 氮化銦 (InN) 離子感測場效應電晶體 (ISFET),經分子氣相沉積(Molecular vapor deposition, MVD)技術,將 3-硫醇基矽丙烷 (3-Mercaptopropyltrimethoxysilane, MPTMS)以氣相法修飾在其閘極表面,以進行DNA雜和反應的偵測。超薄膜氮化銦離子感測場效應電晶體對於溶液中的陰離子,具有相當高的靈敏度與快速的反應時間,在化學與生物分子感測上展現出極大的應用可能。本研究以氣相沉積技術來矽烷化 (Silanization) 3-硫醇基矽丙烷,比起傳統的液相自組裝膜 (Self-assembled monolayer, SAM),此技術能大大地縮短表面修飾的時間。藉水的接觸角驗證,首先在氧離子的電漿清潔後,氮化銦表面呈現0o角,而經1.5個小時的氣相 3-硫醇基矽丙烷修飾後,氮化銦表面可達68o。3-硫醇基矽丙烷的分子尾端具有硫醇 (-SH) 官能基,能用來固化在5端經丙烯酰胺 (Acrylic phosphoramidite) 修飾的DNA探針 (Probe DNA)。將表面覆有3-硫醇基矽丙烷的氮化銦離子感測場效應電晶體浸置到10 uM 的DNA探針溶液中持續12個小時後,修飾完成的氮化銦離子感測場效應電晶體便能與互補的單股DNA (5'-ATTGTTATTAGG-3') 進行雜合反應。我們觀察到當互補對DNA溶液滴入閘極表面時,氮化銦離子感測場效應電晶體的源汲極電流有明顯約6 uA的電流下降。此電流下降的原因可歸因為溶液中帶負電的互補DNA雜合黏附到閘極表面所引起。對於12個鹼基的寡聚核苷酸探針 (Oligonucleotide probe),本研究已成功地偵測到 1 nM 的互補段目標 (Target) DNA,然而對帶有一個鹼基不匹配的非互補DNA,則偵測不到任何明顯的電流變化。
Ultrathin (~10 nm) InN ion sensitive field effect transistors (ISFETs) with gate region modified with 3-mercaptopropyltrimethoxysilane (MPTMS) by molecular vapor deposition (MVD) are used to detect hybridization of deoxyribonucleic acid (DNA). The ultrathin InN ISFETs have a high sensitivity and short response time for anion detection, showing a great potential for chemical and biological sensing applications. Vapor-phase silanization of MPTMS using MVD substantially shortens the response time for surface modification compared to the conventional self-assembled monolayer (SAM) techniques. The change of contact angle of water on InN surface was observed from 0o, indicating the O2 plasma cleaning, to 68o after 1.5 h vapor deposition. MPTMS with -SH terminal functional groups was used to immobilize probe DNA with acrylic phosphoramidite modification at 5'-end. After immersed in 10 uM DNA probes solution for 12 h, the functionalized InN ISFET was used to perform the hybridization with complementary single stranded (ss) DNA 5'-ATTGTTATTAGG-3'. A drain-source current decrease (~6 uA) was observed when a complementary DNA was introduced to the gate region of ISFETs. The current decrease is attributed to the attachment of negatively charged DNA. For a 12-mer oligonucleotide probe, the detection of 1 nM target DNA was accomplished, while the noncomplementary DNA with one base mismatch did not show any obvious current variation.
[1] N. Chaniotakis and N. Sofikiti, "Novel semiconductor materials for the development of chemical sensors and biosensors: A review," Analytica Chimica Acta, 2008.
[2] I. Mahboob, T. Veal, C. McConville, H. Lu, and W. Schaff, "Intrinsic electron accumulation at clean InN surfaces," Physical Review Letters, vol.92, pp.36804, 2004.
[3] I. Mahboob, T. Veal, L. Piper, C. McConville, H. Lu, W. Schaff, J. Furthmuller, and F. Bechstedt, "Origin of electron accumulation at wurtzite InN surfaces," Physical Review B, vol.69, pp.201307, 2004.
[4] "Structure of wurtzite," http://commons.wikimedia.org/wiki/Image:Wurtzite.jpg
[5] Y.-S. Lu, C.-C. Huang, J. A. Yeh, C.-F. Chen, and S. Gwo, "InN-based anion selective sensors in aqueous solutions," Applied Physics Letters, vol.91, pp.202109, 2007.
[6] 何建霖, "氮化銦氫離子感應場效電晶體,"奈米工程與微系統所. 碩士 新竹: 國立清華大學, 2008.
[7] L. N. David, Principle of Biochemistry, Nelson Cox, US: W. H. Freeman and Company New York, 2005.
[8] "Chemical structure of DNA," http://en.wikipedia.org/wiki/DNA
[9] B. R. Eggins, Chemical Sensors and Biosensors, John Wiley, 2001.
[10] J. Epstein, M. Lee, D. Walt, "High-density fiber-optic genosensor microsphere array capable of zeptomole detection limits," Analatical Chemistry, vol.74, pp.1836-1840, 2002.
[11] A. W. Peterson, R. J. Heaton and R. M. Georgiadis, "The effect of surface probe density on DNA hybridization," Nucleic Acids Reasearch, vol.29, pp.5163, 2001.
[12] S. Xiaodi, R. Rudolf, W. Yingju, W. Guangyu, and K. Wolfgang, "Detection of point mutation and insertion mutations in DNA using a quartz crystal microbalance and mutS, a mismatch binding protein," Analytical Chemistry, vol.76, pp.489, 2004.
[13] S. H. Brewer, s. J. Anthireya, S. E. Lappi, D. L. Drapcho, and Stefan Franzen, "Detection of DNA hybridization on gold surfaces by polarization modulation infrared reflection absorption spectroscopy," Langmuir, vol.18, pp.4460-4464, 2002.
[14] J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Guntherodt, C. Gerber, and J. K. Gimzewski, "Translating biomolecular recognition into nanomechanics," Science, vol.288, pp.316, 2000.
[15] B. Massimo, B. Annalisa, R. Lugi, A. Andrea, F. Paolo, and B. Imrich, "Fully electronic DNA hybridization detection by a standard CMOS biochip," Sensors and Actuators B, vol.118, pp.41, 2006.
[16] R. F. Taylor and J. S. Schultz, Handbook of Chmecial and Biological Sensors: IOP Publishing Ltd, 1996.
[17] M. Curreli, R. Zhang, F. N. Ishikawa, H.-K Chang, R. J. Cote, C. Zhou, and M. E. Thompson, "Real-time, label-free detection of biological entities using nanowire-based FETs," IEEE Transctions on Nanotechnology, vol.7, pp.651, 2008.
[18] T. Casss and F. S. Ligler, Immobilized Biomolecules in Analysis, Oxford University Press, 1998.
[19] T. Uno, H. Tabata, and T. Kawai, "Peptide-nucleic acid-modified ion-sensitive field-effect transistor-based biosensor for direct detection of DNA hybridization," Analytical Chemistry, vol.79, pp.52, 2007.
[20] E. Souteyrand, J. P. Cloarec, J. R. Martin, C. Wilson, I. Lawrence, S. Mikkelsen, and M. F. Lawrence, "Direct detection of the hybridization of synthetic homo-Oligomer DNA sequences by field effect," Journal of Physical Chemistry B, vol.101, pp.2980, 1997.
[21] K.-S Song, G-J Zhang, Y. Nakamura, K. Furukawa, T. Hiraki, J.-H Yang, T. Funatsu, I. Ohdomari, and H. Kawarada, "Label-free DNA sensors using ultrasensitive diamond field-effect transistors in solution," Physical Review E, vol.74, pp.041919, 2006.
[22] G. J. Zhang, K. S. Song, Y. Nakamura, T. Funatsu, I. Ohdomari, and H. Kawarada, "DNA micropatterning on polycrystalline diamond via one-step direct amination," Langmuir vol.22, pp.3728, 2006.
[23] A. P. Zhang, L. B. Rowland, E. B. Kaminsky, V. Tilak, J. C. Grande, J. Teetsov, A. Vertiatchikh and L. F. Eastman, "Correlation of device performance and defects in AlGaN/GaN high-electron mobility transistors," Journal of Electronic Materials, vol.32, pp.388, 2007.
[24] B. S. Kang, F. Ren, L. Wang, C. Lofton, Weihong Tan, S. J. Pearton, A. Dabiran, A. Osinsky, and P. P. Chow, "Electrical detection of immobilized proteins with ungated AlGaN/GaN high-electron-mobility transistors," Applied Physics Letters, vol.87, pp.023508, 2005.
[25] B. S. Kang, S. J. Pearton, J. J. Chen, F. Ren, J. W. Johnson, R. J. Therrien, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum, "Electrical detection of deoxyribonucleic acid hybridization with AlGaN/GaN high electron mobility transistors," Applied Physics Letters, vol.89, pp.122102, 2006.
[26] F. Patolsky, G. Zheng, and C. M. Lieber, "Nanowire-based biosensors," Analytical Chemistry, vol.78, pp.4260, 2006.
[27] B. L. Allen, P. D. Kichambare, and A. Star, "Carbon nanotube field-effect-transistor-based biosensors," Advanced Materials, vol.19, pp.1439, 2007.
[28] X. Tang, S. Bansaruntip, N. Nakayama, E. Yenilmez, Y.-L. Chang, and Q. Wang, "Carbon nanotube DNA sensor and sensing mechanism," Nano Letters, vol.6, pp.1632, 2006.
[29] Z. Gao, A. Agarwal, A. D. Trigg, N. Singh, C. Fang, C.-H. Tung, Y. Fan, K. D. Buddharaju, and J. Kong, "Silicon nanowire arrays for label-free detection of DNA," Analytical Chemistry, vol.79, pp.3291, 2007.
[30] E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, "Importance of the Debye screening length on nanowire field effect transistor sensors," Nano Letters, vol.7, pp.3405, 2007.
[31] G. Zheng, F. Patolsky, Y. Cui, W.-U. Wang and Charles M Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays," Nature Biotechnology, vol.23, pp.1294, 2005.
[32] Y. L. Bunimovich, Y. -S. Shin, W.-S. Yeo, M. Amori, G. Kwong, and J. R. Heath, "Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution," Journal of the American Chemical Society, vol.128, pp.16323, 2006.
[33] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, "Sequence-specific label-free DNA sensors based on silicon nanowires," Nano Letters, vol.4, pp.245, 2004.
[34] K. Rohit, B. P. Gila, L. P. Stafford, S. J. Pearton, F. Ren, and A. Osinsky, "Thermal stability of Ohmic contacts to InN," Applied Physics Letters, vol.16, pp. 90, 2007.
[35] S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, "Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature," Applied Physics Letters, vol.84, pp.3765, 2004.
[36] "Surface engineering opportunities," www.micronanosystems.info, 2007.
[37] B. Kobrin, W. Ashurst, R. Maboudian, V. Fuentes, R. Nowak, R. Yi, and J. Chinn, "MVD Technique of Surface Modification," 2004.
[38] B. Kobrin, V. Fuentes, S. Dasaradhi, R. Yi, R. Nowak, J. Chinn, R. Ashurst, C. Carraro, and R. Maboudian, "Molecular vapor deposition – An improved vapor-phase deposition technique of molecular coatings for MEMS devices," Semiconductor Equipment and Materials International, 2004.
[39] B. Kobrin, J. Chinn, and R. W. Ashurst, "Vapor deposition of composite organic-inorganic films," 2005.
[40] S. Flink, F. Veggel, and D. Reinhoudt, "Sensor functionalities in self-assembled monolayers," Advanced Materials, vol.12, pp.1315, 2000.
[41] E. Pavlovic, A. P. Quist, U. Gelius, and S. Oscarsson, "Surface functionalization of silicon oxide at room temperature and atmospheric pressure," Journal of Colloid and Interface Science, vol.254, pp.200, 2002.
[42] E. J. Devor, and M. A. Behlke, "Strategies for attaching oligonucleotides to solid supports," Integrated DNA Technologies, 2005.
[43] B. Pattier, J.-F. Bardeau, M. Edely, A. Gibaud, and N. Delorme, "Cheap and robust ultraflat gold surfaces suitable for high-resolution surface modification," Langmuir, vol.24, pp.821, 2008.
[44] T. L. Barr and Y. L. Liu, "An X-ray photoelectron spectroscopy study of the valence band structure of indium oxides," Journal of Physics and Chemistry of Solids, vol.50, no.7, pp.657-664, 1989.
[45] Manual of Mdoel SR830 DSP Lock-in amplifier, Stanford Research Systems, Inc. 2006.
[46] C. D. Fung, P. W. Cheung, and W. H. Ko, "A generalized theory of an electrolyte-insulator-semiconductor field-Effect transistor," IEEE Transactions on Electron Devices, vol.33, no.1, 1986.
[47] D. E. Yates, S. Levine, and T. W. Healy, "Site-binding model of the electrical double layer at the oxide/water interface," Journal of the Chemical Society, Faraday Transactions vol.1, no.70, 1974.
[48] J. Ross, Nucleic Acid Hybridization Essential Techniques, John Wiley & Sons Ltd, pp.1, 1998
[49] D. K. Aswal, S. Lenfant, D. Guerin, J. V. Yakhmi and D. Vuillaume, Condensed Matter, vol.1, pp.725, 2005.
[50] "Structural elements of the most common nucleotides," http://en.wikipedia.org/wiki/Nucleotide