簡易檢索 / 詳目顯示

研究生: 陳湘棋
Chen, Hsiang-Chi
論文名稱: 利用融合蛋白研究金屬感應轉錄因子SUMO化之特性
Characterizing the SUMOylation effect of metal-responsive transcription factor 1 by constructed fusion protein
指導教授: 林立元
Lin, Lih-Yuan
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 60
中文關鍵詞: 金屬感應轉錄因子
外文關鍵詞: MTF-1, SUMO, Gal4-TAD
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬感應轉錄因子為鋅指結構之轉錄因子,它能與金屬硫蛋白啟動子上的金屬感應序列結合,藉以調控金屬硫蛋白基因的表現。當細胞受到金屬鋅的刺激後,金屬感應轉錄因子會快速地由細胞質進入細胞核中,並且活化蛋白質的轉錄作用。由實驗室先前的研究發現金屬感應因子在其C端具有能被SUMO修飾的IKQE保留序列,為了研究金屬感應轉錄因子被SUMO修飾後的特性,我們將其DNA結合區以Gal4 DNA結合區置換,形成Gal4-TAD融合蛋白質,此融合蛋白質主要分布於細胞核中。在本篇研究中發現Gal4-TAD能夠被SUMO修飾,而當突變SUMO保留序列後,會增加蛋白質的轉錄活性,表示SUMO化會抑制蛋白質的轉錄活性,也顯示SUMO化的發生和金屬感應轉錄因子的完整結構無關,而是藉由辨識SUMO保留序列進行修飾。為了研究金屬感應轉錄因子被SUMO修飾的程度是否和其在細胞中的分布有關,因此我們突變Gal4-TAD蛋白質上的核定位信號使其分布於細胞質中。由實驗結果發現無論蛋白質是位於細胞核或是細胞質皆能被SUMO修飾,而且其修飾的程度相似。當細胞以鋅處理後,在細胞核或是細胞質中皆能觀察到蛋白質被SUMO修飾的程度隨著時間與劑量而有逐漸遞減的現象,表示金屬能夠調控金屬感應轉錄因子被SUMO修飾的程度。當細胞以鋅處理後,SENP1和SENP2蛋白質的量並未隨之改變,同時RanGAP1被SUMO修飾的程度也未受影響,表示金屬造成金屬感應轉錄因子之去SUMO化作用是具有專一性的。


    Metal responsive transcription factor 1 (MTF-1) is a zinc finger protein that recognizes metal responsive elements in the promoter region. MTF-1 retains mainly in the cytoplasm. Upon stimulation, MTF-1 translocates from the cytoplasm into the nucleus and initiates the transcription. Recently, we have demonstrated the occurrence of SUMOylation in MTF-1 and the site of modification was identified. To characterize the SUMOylation in MTF-1, the zinc finger domain of MTF-1 was replaced by Gal4 DNA binding domain (Gal4-TAD). This fusion protein locates in the nucleus when synthesized. The transcriptional activity was enhanced significantly once the site for SUMOylation was mutated, indicating the repression characteristics of SUMOylation for this transcription factor. The result also shows the independence of SUMOylation with zinc finger motifs. To explore whether the SUMOylation is related to the localization of MTF-1, the nuclear localization signal of Gal4-TAD was mutated such that the protein retained only in the cytoplasm. Proteins in either the cytoplasm or the nucleus can be SUMOylated, indicating the irrelevance of cellular location for the modification. When treating cells with zinc, the level of SUMOylation declined in either cytoplasm or nucleus. This finding indicates that metal treatment, but not the translocation process, is the critical factor to remove SUMO from MTF-1. Addition of metal apparently did not affect the cellular level of SUMO-specific protease, SENP1 and SENP2. The metal-induced reduction in SUMO modification did not occur in RanGAP1. Other mechanism should involve in attenuating the SUMOylation of MTF-1 by metals. These results indicate that the reduction of MTF-1 SUMOylation is not a nonspecific response by metal treatment.

    中文摘要 英文摘要 前言 材料與方法 結果 討論 參考文獻 附圖

    Auf der Maur, A., Belser, T., Wang, Y., Gunes, C., Lichtlen, P., Georgiev, O. and Schaffner, W. (2000) Characterization of the mouse gene for the heavy metal-responsive transcription factor MTF-1. Cell Stress Chaperones, 5, 196-206.

    Bies, J., Markus, J. and Wolff, L. (2002) Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J Biol Chem, 277, 8999-9009.

    Bittel, D.C., Smirnova, I.V. and Andrews, G.K. (2000) Functional heterogeneity in the zinc fingers of metalloregulatory protein metal response element-binding transcription factor-1. J Biol Chem, 275, 37194-37201.

    Bloxam, D.L. and Bax, C.M.R. (1996) Zinc deficiency and abnormal fetal development: Assessment of maternal or fetal zinc status. American Journal of Obstetrics and Gynecology, 175, 1078-1078.

    Buschmann, T., Fuchs, S.Y., Lee, C.G., Pan, Z.Q. and Ronai, Z. (2000) SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell, 101, 753-762.

    Chan, C.K., Hubner, S., Hu, W. and Jans, D.A. (1998) Mutual exclusivity of DNA binding and nuclear localization signal recognition by the yeast transcription factor GAL4: implications for nonviral DNA delivery. Gene Ther, 5, 1204-1212.

    Cheng, J., Bawa, T., Lee, P., Gong, L. and Yeh, E.T. (2006) Role of desumoylation in the development of prostate cancer. Neoplasia, 8, 667-676.

    Cherian, M.G., Jayasurya, A. and Bay, B.H. (2003) Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res, 533, 201-209.

    Dalton, T.P., Bittel, D. and Andrews, G.K. (1997) Reversible activation of mouse metal response element-binding transcription factor 1 DNA binding involves zinc interaction with the zinc finger domain. Mol Cell Biol, 17, 2781-2789.

    Dalton, T.P., Li, Q., Bittel, D., Liang, L. and Andrews, G.K. (1996) Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem, 271, 26233-26241.

    Desterro, J.M., Rodriguez, M.S. and Hay, R.T. (1998) SUMO-1 modification of I[kappa]B[alpha] inhibits NF-[kappa]B activation. Mol. Cell, 2, 233-239.

    Goldhaber, S.B. (2003) Trace element risk assessment: essentiality vs. toxicity. Regulatory Toxicology and Pharmacology, 38, 232-242.

    Gong, L., Millas, S., Maul, G.G. and Yeh, E.T. (2000) Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem., 275, 3355-3359.

    Gong, L. and Yeh, E.T. (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem, 281, 15869-15877.

    Green, C.J., Lichtlen, P., Huynh, N.T., Yanovsky, M., Laderoute, K.R., Schaffner, W. and Murphy, B.J. (2001) Placenta growth factor gene expression is induced by hypoxia in fibroblasts: a central role for metal transcription factor-1. Cancer Res, 61, 2696-2703.

    Gunes, C., Heuchel, R., Georgiev, O., Muller, K.H., Lichtlen, P., Bluthmann, H., Marino, S., Aguzzi, A. and Schaffner, W. (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. Embo J, 17, 2846-2854.

    Hang, J. and Dasso, M. (2002) Association of the human SUMO-1 protease SENP2 with the nuclear pore. J. Biol. Chem., 277, 19961-19966.

    Harold H. Sandstead. (2003) Zinc is essential for brain development and function. The Journal of Trace Elements in Experimental Medicine, 16, 165-173.

    Hochstrasser, M. (2001) SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell, 107, 5-8.

    Itahana, Y., Yeh, E.T. and Zhang, Y. (2006) Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol Cell Biol, 26, 4675-4689.

    Jiang, H., Daniels, P.J. and Andrews, G.K. (2003) Putative zinc-sensing zinc fingers of metal-response element-binding transcription factor-1 stabilize a metal-dependent chromatin complex on the endogenous metallothionein-I promoter. J Biol Chem, 278, 30394-30402.

    Johnson, E.S. (2004) Protein modification by SUMO. Annu Rev Biochem, 73, 355-382.

    Johnson, E.S., Schwienhorst, I., Dohmen, R.J. and Blobel, G. (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J, 16, 5509-5519.

    Joseph, J., Tan, S.H., Karpova, T.S., McNally, J.G. and Dasso, M. (2002) SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J. Cell Biol., 156, 595-602.

    Kahyo, T., Nishida, T. and Yasuda, H. (2001) Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol. Cell, 8, 713-718.

    Kim, J., Cantwell, C.A., Johnson, P.F., Pfarr, C.M. and Williams, S.C. (2002) Transcriptional activity of CCAAT/enhancer-binding proteins is controlled by a conserved inhibitory domain that is a target for sumoylation. J Biol Chem, 277, 38037-38044.

    Kirsh, O. (2002) The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J., 21, 2682-2691.

    Klenk, C., Humrich, J., Quitterer, U. and Lohse, M.J. (2006) SUMO-1 controls the protein stability and the biological function of phosducin. J Biol Chem, 281, 8357-8364.

    Kotaja, N., Karvonen, U., Janne, O.A. and Palvimo, J.J. (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell. Biol., 22, 5222-5234.
    Langmade, S.J., Ravindra, R., Daniels, P.J. and Andrews, G.K. (2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem, 275, 34803-34809.

    LaRochelle, O., Gagne, V., Charron, J., Soh, J.W. and Seguin, C. (2001) Phosphorylation is involved in the activation of metal-regulatory transcription factor 1 in response to metal ions. J Biol Chem, 276, 41879-41888.

    Le Drean, Y., Mincheneau, N., Le Goff, P. and Michel, D. (2002) Potentiation of glucocorticoid receptor transcriptional activity by sumoylation. Endocrinology, 143, 3482-3489.

    Lichtlen, P. and Schaffner, W. (2001) Putting its fingers on stressful situations: the heavy metal-regulatory transcription factor MTF-1. Bioessays, 23, 1010-1017.

    Lichtlen, P., Wang, Y., Belser, T., Georgiev, O., Certa, U., Sack, R. and Schaffner, W. (2001) Target gene search for the metal-responsive transcription factor MTF-1. Nucleic Acids Res, 29, 1514-1523.

    Lin, K.A., Chen, J.H., Lee, D.F. and Lin, L.Y. (2005) Alkaline induces metallothionein gene expression and potentiates cell proliferation in Chinese hamster ovary cells. J Cell Physiol, 205, 428-436.

    Mahajan, R., Delphin, C., Guan, T., Gerace, L. and Melchior, F. (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell, 88, 97-107.

    Maret, W. and Sandstead, H.H. (2006) Zinc requirements and the risks and benefits of zinc supplementation. Journal of Trace Elements in Medicine and Biology, 20, 3-18.

    Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S.C., Tatham, M.H., Hay, R.T., Lamond, A.I., Mann, M. and Vertegaal, A.C. (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics, 7, 132-144.

    Miyauchi, Y., Yogosawa, S., Honda, R., Nishida, T. and Yasuda, H. (2002) Sumoylation of Mdm2 by PIAS and RanBP2 enzymes. J. Biol. Chem., 18, 50131-50136.

    Murphy, B.J., Andrews, G.K., Bittel, D., Discher, D.J., McCue, J., Green, C.J., Yanovsky, M., Giaccia, A., Sutherland, R.M., Laderoute, K.R. and Webster, K.A. (1999) Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res, 59, 1315-1322.

    Nacerddine, K., Lehembre, F., Bhaumik, M., Artus, J., Cohen-Tannoudji, M., Babinet, C., Pandolfi, P.P. and Dejean, A. (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell, 9, 769-779.

    Okuma, T., Honda, R., Ichikawa, G., Tsumagari, N. and Yasuda, H. (1999) In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res Commun, 254, 693-698.

    Otsuka, F., Okugaito, I., Ohsawa, M., Iwamatsu, A., Suzuki, K. and Koizumi, S. (2000) Novel responses of ZRF, a variant of human MTF-1, to in vivo treatment with heavy metals. Biochim Biophys Acta, 1492, 330-340.

    Owerbach, D., McKay, E.M., Yeh, E.T., Gabbay, K.H. and Bohren, K.M. (2005) A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun, 337, 517-520.

    Pedersen, M.O., Larsen, A., Stoltenberg, M. and Penkowa, M. (2009) The role of metallothionein in oncogenesis and cancer prognosis. Prog Histochem Cytochem, 44, 29-64.

    Pichler, A., Gast, A., Seeler, J.S., Dejean, A. and Melchior, F. (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell, 108, 109-120.

    Prasad, A.S. (1998) Zinc and immunity. Molecular and Cellular Biochemistry, 188, 63-69.

    Rodriguez, M.S., Dargemont, C. and Hay, R.T. (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem., 276, 12654-12659.
    Ross, S., Best, J.L., Zon, L.I. and Gill, G. (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell, 10, 831-842.

    Sachdev, S. (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev., 15, 3088-3103.

    Saitoh, H. and Hinchey, J. (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem, 275, 6252-6258.

    Salgueiro, M.J., Weill, R., Zubillaga, M., Lysionek, A., Caro, R., Goldman, C., Barrado, D., Sarrasague, M.M., Ridolfi, A. and Boccio, J. (2004) Zinc deficiency and growth: current concepts in relationship to two important points: intellectual and sexual development. Biol Trace Elem Res, 99, 49-69.

    Saydam, N., Adams, T.K., Steiner, F., Schaffner, W. and Freedman, J.H. (2002) Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem, 277, 20438-20445.

    Saydam, N., Georgiev, O., Nakano, M.Y., Greber, U.F. and Schaffner, W. (2001) Nucleo-cytoplasmic trafficking of metal-regulatory transcription factor 1 is regulated by diverse stress signals. J Biol Chem, 276, 25487-25495.

    Schmidt, D. and Muller, S. (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl Acad. Sci. USA, 99, 2872-2877.

    Seeler, J.S. and Dejean, A. (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol, 4, 690-699.

    Thirumoorthy, N., Manisenthil Kumar, K.T., Shyam Sundar, A., Panayappan, L. and Chatterjee, M. (2007) Metallothionein: an overview. World J Gastroenterol, 13, 993-996.

    Tian, S., Poukka, H., Palvimo, J.J. and Janne, O.A. (2002) Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem J, 367, 907-911.

    Yamaguchi, T., Sharma, P., Athanasiou, M., Kumar, A., Yamada, S. and Kuehn, M.R. (2005) Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Mol Cell Biol, 25, 5171-5182.

    Yang, M., Hsu, C.T., Ting, C.Y., Liu, L.F. and Hwang, J. (2006) Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J Biol Chem, 281, 8264-8274.

    Yang, S.H., Jaffray, E., Hay, R.T. and Sharrocks, A.D. (2003) Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol Cell, 12, 63-74.

    Yang, S.H. and Sharrocks, A.D. (2004) SUMO promotes HDAC-mediated transcriptional repression. Mol Cell, 13, 611-617.

    Yeh, E.T. (2009) SUMOylation and De-SUMOylation: wrestling with life's processes. J Biol Chem, 284, 8223-8227.

    Yu, C.W., Chen, J.H. and Lin, L.Y. (1997) Metal-induced metallothionein gene expression can be inactivated by protein kinase C inhibitor. FEBS Lett, 420, 69-73.

    Zhang, H., Saitoh, H. and Matunis, M.J. (2002) Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol. Cell. Biol., 22, 6498-6508.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE