簡易檢索 / 詳目顯示

研究生: 葉豐彰
Yeh, Feng-Chang
論文名稱: 高效能數位控制直流電壓產生器具暫態加速功能於動態類比數位轉換區間
A High-Efficiency Digitally-Controlled Switching Converter with Tracking Speed Enhancement for Windowed ADC Usage
指導教授: 黃柏鈞
Huang, Po-Chiun
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 48
中文關鍵詞: 直流電壓產生器數位控制
外文關鍵詞: dc-dc buck converter, dc-dc, DPWM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著能源問題逐漸受到重視,應用在電源管理的電路研究也越來越重要,例如:手機、PDA…等。因應不同模式的需要切換電壓,藉以達到節省能源的目的。而隨著電子產品縮小化的趨勢,產品中的電源供應系統也朝著縮小設計面積與移除被動元件的方向前進,有兩種主要的方式達到這兩個方向:提高轉換頻率與數位化實現電路。
    目前控制器的架構大都是以類比電路的方式去完成,主要是控制變數都是類比訊號,將信號直接處理。但是隨著系統效能管理需求日大,對於多種功能性的需求,類比訊號處理明顯不足,隨著增加的會是晶片面積提升以及電路設計的複雜度,可以預料地,在高速切換式電源轉換器應用,數位控制電路將會取代目前主流的類比控制器。數位實現電路具備的潛在優勢主要包含設計電路的靈活性,受控程序可控的特性,減少外在所需的調節元件,增進系統的可靠度,簡單化系統整合,並且能夠有效提升多種功能的效能。
    在此論文中我們實現了一個可以運作在5MHz的高效能數位控制直流電壓產生器,使用一個低功耗低面積的動態類比數位轉換區間以及高解析度的數位脈衝寬度調變器,減少在數位控制電路中資料處理所需要的功耗來達成提高效能的目的。另外為了改善使用動態類比數位轉換區間不利於暫態鎖定速度的問題,我們提出了一個具有暫態加速功能的數位控制器,在最後量測的結果對於鎖定速度最多能夠有三倍的改善,而最高效能也能夠到達93.2%。


    Voltage scaling is a technique for high energy-efficiency operation.
    However, the voltage scaling technique requires a adaptive
    power-supply regulator, which is difficult and complex to implement
    by analog control. Digitally controlled dc-dc converters inherently
    have the characteristics of flexibility, robust and programmable,
    but its efficiency may be lower because of power waste in mixed
    signal data conversion.
    This thesis demonstrates a complete design of a digitally controlled
    buck converter for dynamic voltage systems. The converter senses the
    voltage error by a windowed ADC which consumes less power than a
    conventional ADC. A nonlinear digital controller is proposed to
    improve the tracking performance. A power MOS width slicing technique further increase the power efficiency.
    This design is fabricated in a 0.18-um CMOS process. The chip
    area is 2.9mm^2. The switching frequency is 5 MHz. The measurement
    result shows the power efficiency can achieve 93% and the tracking
    behavior could be several times improved by the proposed nonlinear
    control.

    Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Thesis Organization 3 Chapter 2 Overview of Digitally Controlled DC-DC Buck Converter 5 2.1 Buck Converter Operation 5 2.2 System Architecture 7 2.2.1 ADC and DPWM 8 2.2.2 Digital Compensator . 9 2.2.3 Limit Cycle Oscillation 9 2.2.4 Discontinuous Conduction Mode 9 2.2.5 Adjustable Width Control 11 2.2.6 Summary 11 Chapter 3 Delay-Line Based Analog-to-Digital Converter 13 3.1 Windowed ADC 13 3.2 Current Controlled Delay-Line Based ADC 14 3.2.1 Delay-Line ADC Architecture 14 3.2.2 Voltage to Current Converter 15 3.2.3 Propagation Delay 15 3.2.4 Stage Number 16 3.2.5 Bias Current 18 3.2.6 Non Uniform ADC 18 3.2.7 Moving Average . 20 3.2.8 Summary 21 Chapter 4 Digital Controller 22 4.1 Buck Converter Modeling 22 4.2 PID Controller Design 26 4.3 Turbo Mode For Transient Improvement 29 4.4 Simulation Result 31 4.5 Summary 33 Chapter 5 Chip Implementation and Measurement Results 34 5.1 Mixed-Mode Simulation 34 5.2 Chip Measurement 36 5.2.1 Measurement Setup 36 5.2.2 Measurement Result 37 5.3 Summary 46 6 Conclusion 48

    [1] G. Wei and M. A. Horowitz, “A fully digital, energy-efficient, adaptive power-supply
    regulator,” IEEE J. Solid-State Circuits, vol. 34, pp. 520–529, Apr. 1999.
    [2] J. Kim and M. A. Horowitz, “A efficient digital sliding controller for adaptive powersupply
    regulation,” IEEE J. Solid-State Circuits, vol. 37, pp. 639–647, May 2002.
    [3] J. Xiao, A. V. Peterchev, J. Zhang, and S. R. Sanders, “A 4¹A quiescent-current dualmode
    digitally controlled buck converter IC for cellular phone applications,” IEEE J.
    Solid-State Circuits, vol. 39, pp. 2342–2348, Dec. 2004.
    [4] B. Patella., A. Prodic, A. Zirger, and D. Maksimovic, “High-frequency digital PWM
    controller IC for DC-DC converters,” IEEE Transactions on Power Electronics,
    vol. 18, Jan. 2003.
    [5] A. Prodic and D. Maksimovic, “Design of a digital PID regulator based on look-up tables
    for control of high-frequency DC-DC converters,” IEEEWorkshop on Computers
    in Power Electronics, pp. 2342–2348, 2002.
    [6] B. Miao, R. Zane, and D. Maksimovic, “Automated digital controller design for
    switching converters,” IEEE Power Electronics Specialists Conference, pp. 2729–
    2735, 2005.
    [7] R. W. Erickson and D. Maksimovic, Fundamental of Power Electronics. Kluwer
    Academic Publishers, 2000.
    [8] A. Syed, E. Ahmed, and D. Maksimovic, “Digital pulse width modulator architectures,”
    IEEE Power Electronics Specialists Conference, vol. 6, pp. 4689–4695, 2004.
    [9] H. Peng, A. Prodic, E. Alarcon, and D. Maksimovic, “Modeling of quantization effect
    in digitally controlled DC-DC converters,” IEEE Transactions on Power Electronics,
    vol. 22, pp. 208–215, Jan. 2007.
    [10] A. V. Peterchev and S. R. Sanders, “Quantization resolution and limit cycling in digitally
    controlled PWM converters,” IEEE Transactions on Power Electronics, vol. 18,
    pp. 301–308, Jan. 2003.
    [11] A. Parayandeh and A. Prodic, “Programmable analog-to-digital converter for lowpower
    DC-DC SMPS,” IEEE Transactions on Power Electronics, vol. 23, pp. 500–
    505, Jan. 2008.
    [12] Z. Lukic, N. Rahman, and A. Prodic, “Multibit §-¢ PWM digital controller IC for
    DC-DC converters operating at switching frequencies beyond 10 MHz,” IEEE Transactions
    on Power Electronics, vol. 22, pp. 1693–1707, Jan. 2007.
    [13] L. Chen, B. Shi, and C. Lu, “A high speed/power ratio continuous-time CMOS current
    comparator,” IEEE International Conference on Electronics, Circuits and Systems,
    vol. 2, pp. 883–886, Dec. 2000.
    [14] D. Maksimovic and R. Zane, “Small-signal discrete-time modeling of digitally controlled
    PWM converters,” IEEE Trans. Ind. Electron., vol. 22, pp. 2552–2556, Nov.
    2007.
    [15] A. Prodic, D. Maksimovic, and R. W. Erickson, “Design and implementation of a
    digital PWM controller for a high-frequency switching DC-DC power converter,” in
    Proc. IEEE Industrial Electronics Society Conf., pp. 893–898, 2001.
    [16] G. F. Franklin, J. D. Powell, and M. L.Workman, Digital Control of Dynamic System.
    Addison-Wesley, 1998.
    [17] S. Buso and P. Mattacelli, Digital Cotrol in Power Electronics. Morgan& Claypool
    Publishers, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE