簡易檢索 / 詳目顯示

研究生: 巫啟男
Wu, Chi-Nan
論文名稱: 應用於自旋電子學的新穎磁性氧化物
Novel Magnetic Oxides for Spintronic Applications
指導教授: 郭瑞年
Kwo, Ray-Nien
口試委員: 洪銘輝
林昭吟
賴志煌
蘇雲良
李尚凡
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 107
中文關鍵詞: 磁性氧化物自旋電子學稀磁性氧化物雷射分子束磊晶自旋幫浦拓樸絕緣體釔鐵石榴石
外文關鍵詞: Magnetic Oxide, Spintronics, Diluted Magnetic Oxide, Laser MBE, Spin Pumping, Topological Insulator, Yttrium Iron Garnet
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵磁氧化物被廣泛的研究,因其具有十分有趣的物理特性,以及有潛力應用於自旋電子學元件。本論文聚焦在研究應用於自旋電子學的新穎磁性氧化物,並根據主題包括:「無群集,鈷摻雜氧化釔(Co: Y2O3)高介電係數稀磁氧化物(DMO)」,「雷射分子束外延(Laser MBE)生長SrRuO3和Sr2RuO4用於實現自旋極化的二維電子氣(2DEG)和自旋極化超導電流」和「磁性氧化物釔鐵石榴石(YIG)結合拓撲絕緣體(TI)的自旋幫浦研究和自旋轉移矩鐵磁共振(ST-FMR)以開發自旋電子元件」。此外,在成長YIG異質結構之前,我們也進行了TI /鐵磁金屬(TI / FM)的自旋幫浦研究。在低溫沉積生長的無群集,Co: Y2O3,我們觀察到室溫(RT)鐵磁性,且通過退火過程調製氧空缺濃度,我們可以控制飽和磁矩。我們證明氧空缺在鐵磁有序中發揮了至關重要的作用,其為磁性極化子模型的缺陷中心,以解釋中能隙,低載子濃度DMO的磁性來源。對於Laser MBE生長的SrRuO3和Sr2RuO4,我們獲得SrRuO3膜的良好結晶性和理想的電阻率。我們也獲得Sr2RuO4膜的良好結晶性和非常低的殘餘電阻率,但沒有觀察到超導現象。可能由於Sr2RuO4超導對於缺陷很敏感,並容易被缺陷破壞。為了實現超導,我們需要付出更多努力來降低Sr2RuO4的剩餘電阻。此外,我們成功的成長出具有良好結晶度,而且是金屬性的SrRuO3 / SrTiO3超晶格,提供了一個基礎來研究自旋極化2DEG。在Bi2Se3 / Fe3Si和Fe / Bi2Te3高品質的薄膜的自旋幫浦研究方面,我們在室溫下觀察到,由於逆自旋霍爾效應產生的大電壓(VISHE),也進行了自旋霍爾角計算。 TI /FM產生的價電電流密度比Fe3Si /NM和Fe3Si /GaAs結果都還來的高,大約2-5倍,這可歸因於TI固有的強的自旋-軌道耦合特性,並表示以TI為基礎的元件可在自旋電子的應用上有很大的潛力。我們成長並分析了高品質的YIG薄膜。 YIG薄膜的優良結晶度和低磁阻尼確保了高效的自旋輸運和自旋幫浦量測,我們分別在Bi2Se3 / YIG,白金/ YIG結構上都進行了實驗。我們都觀察到了VISHE和大的共振場的負位移。此外,ST-FMR在鉑/ YIG結構已被我們觀察到,這提供了一個新方向,以開發用於自旋電子應用的新穎設備。


    Magnetic oxides have been studied widely for the interesting physical properties and potential applications for spintronics. This thesis was focused on the novel magnetic oxides for spintronic applications, and based on the topics including: "cluster free, Co doped Y2O3 (Co: Y2O3) high  diluted magnetic oxides (DMO) ", "Laser MBE grown SrRuO3 and Sr2RuO4 for realizing the spin polarized 2 dimensional electron gas (2DEG) and the spin polarized supercurrent", and "magnetic oxide yittrium iron garnet (YIG) combined with topological insulator (TI) for the study of spin pumping and spin-transfer-torque ferromagnetic resonance (ST-FMR) for novel spintronic devices". Spin Pumping in TI/ferromagnetic metal (TI/FM) heterostructures were studied before YIG-based heterostructures researches. For the cluster free, DMO of Co: Y2O3 grown by low temperature deposition, room temperature (RT) ferromagnetism was observed, and the saturation magnetic moment was modulated by oxygen vacancy concentration through post annealing process. Oxygen vacancies are shown to play a crucial role in ferromagnetic ordering, as defect centers in the bound magnetic polaron model to account for this DMO of medium band gap with low carrier concentration. For Laser MBE grown SrRuO3 and Sr2RuO4, we obtained good crystallinity of SrRuO3 films and reasonable RT resistivity. We also obtained good crystallinity of Sr2RuO4 films and very low residue resistivity, but without superconductivity, which might be sensitive and destroyed by the defects. More efforts are needed to acquire lower residual resistivity for the superconductivity. The metallic SrRuO3/SrTiO3 superlattice with good crystallinity was successfully grown, providing a matrix to studied spin polarized 2DEG. The spin pumping effect in high quality films of Bi2Se3/Fe3Si and Fe/Bi2Te3 were studied. At RT, large voltages due to the inverse spin Hall Effect (VISHE) were detected in Bi2Se3/Fe3Si and Fe/Bi2Te3. The spin Hall angle was calculated. The charge current densities of TI/FM are about 2-5 times higher than the Fe3Si/normal metal and Fe3Si/GaAs results, attributed to strong spin-orbit coupling inherent of TIs, demonstrating the high potential of exploiting TI-based structures for spintronic applications. High quality YIG films have been grown and characterized. The excellent crystallinity and low magnetic damping of YIG films ensure efficient spin transport measurements and spin pumping have been performed in Bi2Se3/YIG, Pt/YIG structures. We observed VISHE and large negative resonance field shifts. Moreover, ST-FMR has been demonstrated in Pt/YIG structures, providing a direction to developing novel devices for spintronic applications.

    Contents 誌謝 iii Publication List iv 摘要 v Abstract vii List of Figures xv List of Tables xix Chapter 1 Introduction 1 1.1 Introduction and motivation 1 1.1.1 Dopants, defects and ferromagnetism in oxides: diluted magnetic oxide 2 1.1.2 Functional magnetic oxides growth by Laser MBE 2 1.1.3 Magnetic oxide for spintronic devices: yittrim iron garnet 2 1.2 Diluted Magnetic Oxide 3 1.2.1 Background and the reason why high- oxide matrix for application 3 1.2.2 Bound magnetic polaron in DMO 4 1.2.3 Avoidance of magnetic cluster or second phase 5 1.2.4 Magnetic moments modulated by the oxygen vacancy concentration 6 1.3 Laser MBE grown SrRuO3 and Sr2RuO4 6 1.3.1 Spin-polarized supercurrent and spin-polarized 2D electron gas for spintronic application 6 1.3.2 Ruddlesden-Popper series ruthenates: SrRuO3 and Sr2RuO4 7 1.3.3 Ruthenium deficiency in Laser MBE grown SrRuO3 and Sr2RuO4 9 1.4 Magnetic oxide YIG for spintronic devices and YIG-based heterostructure for spin pumping and ST-FMR 10 1.4.1 Yttrium iron garnet Y3Fe5O12 (YIG) 10 1.4.2 YIG-based heterostructures: utilization of spin-momentum locking of Topological insulators (TIs) 10 1.4.3 Spin pumping technique for TI/Ferromagnetic metal, Pt/YIG and TI/YIG 11 1.4.4 Spin transfer torque ferromagnetic resonance 13 Chapter 2 Experimental Procedure 14 2.1 Growth and characterization of Co doped Y2O3 for DMO research 14 2.1.1 MBE growth and furnace anneal 14 2.1.2 Structural and magnetism characterizations 15 2.2 Laser MBE growth of SrRuO3 and Sr2RuO4 16 2.2.1 Substrate preparation 16 2.2.2 Single-target growth by Laser MBE 16 2.2.3 Dual-target growth by Laser MBE 17 2.2.4 Characterization 17 2.3 Experimental of TI/FM for spin pumping 20 2.3.1 Growth of TI/FM heterostructure 20 2.3.2 Spin pumping of TI/FM heterostructure 21 2.4 Experimental of YIG and YIG-based heterostructure for spin pumping and ST-FMR 22 2.4.1 Growth of YIG and YIG-based heterostructures 22 2.4.2 Structural analysis 23 2.4.3 Spin pumping and ST-FMR of YIG-based heterostructures 23 Chapter 3 Room Temperature Ferromagnetic behavior in Cluster Free, Co doped Y2O3 DMO Films 25 3.1 EXAFS analysis after annealing to preclude the formation of Co cluster 25 3.2 Oxygen vacancy concentration analysis by XANES 27 3.3 Saturation magnetic moment measured by SQUID 31 3.4 Magnetic properties by x-ray magnetic circular dichroism 32 3.5 The relationship between oxygen vacancy concentration and ferromagnetism: Bound magnetic polaron model 35 3.6 Summary 36 Chapter 4 Laser MBE grown SrRuO3 and Sr2RuO4 38 4.1 Results of SrRuO3 film grown by Laser MBE 38 4.1.1 Grown by dual-target method 38 4.1.2 Grown by single-target method 42 4.2 Results of Sr2RuO4 film grown by Laser MBE 44 4.2.1 Grown by dual-target method 44 4.2.2 Grown by off stoichiometric single-target method 48 4.2.3 Discussion on the absence of superconductivity 49 4.3 Growth of SrRuO3/SrTiO3 superlattice 50 4.4 Summary 55 Chapter 5 Spin Pumping in TI/FM 57 5.1 Inversed spin Hall voltage of Bi2Se3/Fe3Si and Fe/Bi2Te3 57 5.2 Spin hall angle calculation of Bi2Se3/Fe3Si and Fe/Bi2Te3 60 5.3 Charge current densities comparison of conventional spin pumping devices and TI- based spin pumping devices 61 5.4 Spin pumping study on TI/oxide/FM structure 63 5.5 Summary 65 Chapter 6 Magnetic oxide YIG for spintronic devices and YIG-based heterostructure for spin pumping and ST-FMR 66 6.1 Growth and ferromagnetic resonance results of YIG films 66 6.2 Growth, transport properties and spin pumping study of TI/YIG structure 70 6.3 Spin pumping and ST-FMR study on Pt/YIG 76 6.3.1 Spin pumping of Pt/YIG 76 6.3.2 ST-FMR of Pt/YIG 79 6.4 Summary 83 Chapter 7 Conclusion 84 Appendix I-Structural and Magnetic analysis of Cluster Free, High  HfO2 Films with Co Doping 91 Appendix II- Ferromagnetism in cluster free, transition metal doped high  dilute magnetic oxides: films and nanocrystals 107

    Reference:
    [1] J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).
    [2] S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton, and T. Steiner, Semicond. Sci. Technol. 19, R59 (2004).
    [3] Y. H. Chang, Y. L. Soo, W. C. Lee, M. L. Huang, Y. J. Lee, S. C. Weng, W. H. Sun, M. Hong, J. Kwo, S. F. Lee, J. M. Ablett, and C.-C. Kao, Appl. Phys. Lett. 91, 082504 (2007).
    [4] Y. L. Soo, S. C. Weng, W. H. Sun, S. L. Chang, W. C. Lee, Y. S. Chang, J. Kwo, M. Hong, J. M. Ablett, C. C. Kao, D. G. Liu, and J. F. Lee, Phys. Rev. B 76, 132404 (2007).
    [5] Y. L. Soo, T. S. Wu, C. S. Wang, S. L. Chang, H. Y. Lee, P. P. Chu, C. Y. Chen, L. J. Chou, T. S. Chan, C. A. Hsieh, J. F. Lee, J. Kwo, and M. Hong, Appl. Phys. Lett. 98, 031906 (2011).
    [6] J. M. D. Coey, P. Stamenov, R. D. Gunning, M. Venkatesan, and K. Paul, New J. Phys. 12, 053025 (2010).
    [7] H. S. Hsu, J. C. A. Huang, S. F. Chen, and C. P. Liu, Appl. Phys. Lett. 90, 102506 (2007).
    [8] M. Eschrig, Physics Today 64, (2011).
    [9] H.-T. Jeng, S.-H. Lin, and C.-S. Hsue, Phys. Rev. Lett. 97, 067002 (2006).
    [10] M. Verissimo-Alves, P. García-Fernández, D. I. Bilc, P. Ghosez, and J. Junquera, Phys. Rev. Lett. 108, 107003 (2012).
    [11] J. Choi, C. B. Eom, G. Rijnders, H. Rogalla, and D. H. A. Blank, Appl. Phys. Lett. 79, 1447 (2001).
    [12] Z. Q. Mao, Y. Maenoab, and H. Fukazawa, Materials Research Bulletin 35, 1813 (2000).
    [13] Y. Krockenberger, M. Uchida, K. S. Takahashi, M. Nakamura, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 97, 082502 (2010).
    [14] S. N. Ruddlesden and P. Popper, Acta Crystallographica 11, 54 (1958).
    [15] G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C.-B. Eom, D. H. A. Blank, and M. R. Beasley, Rev. Mod. Phys. 84, 253 (2012).
    [16] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Nature 372, 532 (1994).
    [17] T. M. Rice and M. Sigrist, J. Phys.: Candens. Matter 7, (1995).
    [18] A. P. Mackenzie, R. K. W. Haselwimmer, A. W. Tyler, G. G. Lonzarich, Y. Mori, S. Nishizaki, and Y. Maeno, Phys. Rev. Lett. 80, 161 (1998).
    [19] X. Cai, Y. A. Ying, N. E. Staley, Y. Xin, D. Fobes, T. J. Liu, Z. Q. Mao, and Y. Liu, Phys. Rev. B 87, 081104 (2013).
    [20] X.-L. Qi and S.-C. Zhang, Phys. Today 63, 33 (2010).
    [21] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
    [22] Y. Tanaka, T. Yokoyama, and N. Nagaosa, Phys. Rev. Lett. 103, 107002 (2009).
    [23] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
    [24] J. Tang, L.-T. Chang, X. Kou, K. Murata, E. S. Choi, M. Lang, Y. Fan, Y. Jiang, M. Montazeri, W. Jiang, Y. Wang, L. He, and K. L. Wang, Nano Letters 14, 5423 (2014).
    [25] C. H. Li, O. M. J. van 't Erve, J. T. Robinson, Y. Liu, L. Li, and B. T. Jonker, Nature Nanotechnology 9, 218 (2014).
    [26] K. Ando, S. Takahashi, J. Ieda, H. Kurebayashi, T. Trypiniotis, C. H. Barnes, S. Maekawa, and E. Saitoh, Nat. Mater. 10, 655 (2011).
    [27] O. Mosendz, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, Phys. Rev. Lett. 104, 046601 (2010).
    [28] Y. Tserkovnyak, A. Brataas, and G. Bauer, Phys. Rev. Lett. 88, 117601 (2002).
    [29] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Rev. Mod. Phys. 77, 1375 (2005).
    [30] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).
    [31] Y. Ando, K. Ichiba, S. Yamada, E. Shikoh, T. Shinjo, K. Hamaya, and M. Shiraishi, Phys. Rev. B 88, 140406 (2013).
    [32] A. Tsukahara, Y. Ando, Y. Kitamura, H. Emoto, E. Shikoh, M. Delmo, T. Shinjo, and M. Shiraishi, Phys. Rev. B 89, 235317 (2014).
    [33] M. Obstbaum, M. Härtinger, H. G. Bauer, T. Meier, F. Swientek, C. H. Back, and G. Woltersdorf, Phys. Rev. B 89, 060407 (2014).
    [34] T. Chiba, G. E. W. Bauer, and S. Takahashi, Phys. Rev. Appl. 2, 034003 (2014).
    [35] T. Chiba, M. Schreier, G. E. W. Bauer, and S. Takahashi, Journal of Applied Physics 117, (2015).
    [36] H. Nakayama, M. Althammer, Y. T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S. Takahashi, R. Gross, G. E. W. Bauer, S. T. B. Goennenwein, and E. Saitoh, Phys. Rev. Lett. 110, 206601 (2013).
    [37] M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, Science 266, 1540 (1994).
    [38] T. Ohnishi, K. Shibuya, M. Lippmaa, D. Kobayashi, H. Kumigashira, M. Oshima, and H. Koinuma, Appl. Phys. Lett. 85, 272 (2004).
    [39] Y. L. Hsu, Y. J. Lee, Y. H. Chang, M. L. Huang, Y. N. Chiu, C. C. Ho, P. Chang, C. H. Hsu, M. Hong, and J. Kwo, J. Cryst. Growth 301, 588 (2007).
    [40] H. Y. Hung, G. Y. Luo, Y. C. Chiu, P. Chang, W. C. Lee, J. G. Lin, S. F. Lee, M. Hong, and J. Kwo, J. Appl. Phys. 113, 17C507 (2013).
    [41] C. Houchen, L. Peng, Z. Wei, L. Tao, A. Hoffmann, D. Longjiang, and W. Mingzhong, Magnetics Letters, IEEE 5, 1 (2014).
    [42] T. Liu, H. Chang, V. Vlaminck, Y. Sun, M. Kabatek, A. Hoffmann, L. Deng, and M. Wu, J. Appl. Phys. 115, 17A501 (2014).
    [43] P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Rev. Mod. Phys. 53, 769 (1981).
    [44] J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).
    [45] D. SHINDO, K. HIRAGA, M. HIRABAYASHI, M. KIKUCHI, Y. SYONO, S. FURUNO, K. HOUJOU, T. SOGA, and H. OTSU, J Electron Microsc (Tokyo) 38, 155 (1989).
    [46] H. Yang, Q. Q. Liu, F. Y. Li, C. Q. Jin, and R. C. Yu, Supercond. Sci. Technol. 18, 1360 (2005).
    [47] A. Travlos, N. Boukos, G. Apostolopoulos, and A. Dimoulas, Appl. Phys. Lett. 82, 4053 (2003).
    [48] Y. Joly, Phys. Rev. B 63, 125120 (2001).
    [49] O. Bunău and Y. Joly, J. Phys.: Condens. Matter 21, 345501 (2009).
    [50] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, Appl. Phys. Lett. 77, 130 (2000).
    [51] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila, D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt, and J. M. Rosamilia, J. Appl. Phys. 89, 3920 (2001).
    [52] C. L. Hinkle, C. Fulton, R. J. Nemanich, and G. Lucovsky, Microelectron. Eng. 72, 257 (2004).
    [53] K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara, H. Nakayama, T. Yoshino, K. Harii, Y. Fujikawa, M. Matsuo, S. Maekawa, and E. Saitoh, J. Appl. Phys. 109, 103913 (2011).
    [54] P. Deorani, J. Son, K. Banerjee, N. Koirala, M. Brahlek, S. Oh, and H. Yang, Phys. Rev. B 90, 094403 (2014).
    [55] H. Y. Hung, T. H. Chiang, B. Z. Syu, Y. T. Fanchiang, J. G. Lin, S. F. Lee, M. Hong, and J. Kwo, Appl. Phys. Lett. 105, 152413 (2014).
    [56] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE