研究生: |
邱英棕 Chiu, Ying-Tsung |
---|---|
論文名稱: |
巨量多輸入多輸出系統中基於單串流設計方法之低複雜度混合預編碼研究 Low-Complexity Per-Stream Based Approach for Hybrid Precoding Design in Massive MIMO Systems |
指導教授: |
蔡育仁
Tsai, Yuh-Ren |
口試委員: |
梁耀仁
Liang, Yao-Jen 鍾偉和 Chung, Wei-Ho |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 巨量多輸入多輸出 、混和 、預編碼 、毫米波 、符元間干擾 |
外文關鍵詞: | MIMO, hybrid, precoder, mmWave, ISI |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了迎接下世代行動通訊系統更高的資料率,混和預編碼有著較少的硬體花費和低功率消耗的特性讓它成為了熱門的研究議題。這個特性也使混和預編碼器非常適合巨量天線多重輸入多重輸出系統。在我的研究中,我提出了單射頻元件能量限制,因為我們發現總能量限制不符合實際情形,它會使射頻元件輸出的能量超出其上限。之後,我們提出了在射頻元件數大於資料束的數量情形下使用的混和預編碼器,多餘的射頻元件被拿來補償指向向量。由於編碼器的限制會造成所補償的向量偏移,這個偏移又會產生出多餘的干擾,而我們提出的混和預編碼器的優點是可以避免掉這個干擾。我們所提出的混和預編碼器的複雜度也很低。另外我們也探討了哪一種狀態的通道適合射頻元件數大於資料束的數量的情況。最後,模擬結果顯示我們提出方法頻譜效益優於過去傳統的方法。
To meet the higher data rate in the next generation mobile communication system, hybrid precoding has attracted a lot of attentions due to the low hardware cost and power consumption. That’s why hybrid precoder is suitable for millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. In this work, we propose per RF chain power constraint because we find out total power constraint is not practical. Total power constraint may make RF chain power exceed its power limitation. Afterwards, we propose the hybrid precoder structure for the case that number of RF chains is greater than number of data streams. The extra RF chains is used for compensate the steering vector to obtain better performance. The advantage of our proposed hybrid precoder is that it has low computation complexity. We also explore which channel state is suitable for the case about number of data streams greater than number of RF chains. Finally, simulation results show the superiority of the proposed method in terms of achievable spectral efficiency over other previous solutions.
[1] S. Yong and C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges,” EURASIP J. Wireless Commun. Netw., vol. 2007, no. 1, pp. 50–50, 2007.
[2] E. Dahlman, S. Parkvall, J. Skold, and P. Beming, 3G Evolution HSPA and LTE for Mobile Broadband, New York: Academic, 2008.
[3] X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, ‘‘Alternating minimization algorithms for hybrid precoding in millimeter r wave MIMO systems,’’ IEEE J. Sel. Topics Signal Process., vol.10, no.3, Apr. 2016, pp.485–500.
[4] F. Sohrabi, W. Yu, "Hybrid digital and analog beamforming design for large-scale antenna arrays", IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, Apr. 2016, pp. 501-513.
[5] F. Sohrabi and W. Yu, ‘‘Hybrid beamforming with finite-resolution phase shifters for large-scale MIMO systems,’’ in Proc. IEEE 16th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Jun./Jul. 2015, pp. 136–140.
[6] C.-H. Chen, C.-R. Tsai, Y.-H. Liu, W.-L. Hung, and A.-Y. Wu, ‘‘Compressive sensing (CS) assisted low-complexity beamspace hybrid precoding for millimeter-wave MIMO systems’’, IEEE Trans. Signal Process., vol. 65, no. 6, Mar. 2016, pp. 1412-1424.
[7] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, Mar. 2014, pp. 1499–1513.
[8] R. Mendez-Rial, C. Rusu, N. Gonzalez-Prelcic, and R. W. Heath, ‘‘Dictionary-free hybrid precoders and combiners for mmWave MIMO systems’’, Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Jun./Jul. 2015, pp. 151-155.
[9] R. W. Heath, Jr., N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, ‘‘An overview of signal processing techniques for millimeter wave MIMO systems,’’ IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, Apr. 2016, pp. 436–453.
[10] V. Raghavan and A. M. Sayeed, “Sublinear capacity scaling laws for sparse MIMO channels,” IEEE Trans. Inf. Theory, vol. 57, no. 1, Jan. 2011, pp. 345–364.
[11] N. Li, Z. Wei, H. Yang, X. Zhang, and D. Yang, “Hybrid precoding for mmWave massive MIMO systems with partially connected structure,” IEEE Access, vol. 5, 2017, pp. 15142–15151.
[12] Q. Qin, G. Lin, P. Cheng, B. Gong, “Time-varying channel estimation for millimeter wave multiuser MIMO systems”, IEEE Trans. Veh. Technol., vol. 67, no. 10, Oct. 2018, pp. 9435-9448.
[13] C. Rusu, R. Mèndez-Rial, N. González-Prelcic, and R. W. Heath, Jr., “Low complexity hybrid precoding strategies for millimeter wave communication systems,” IEEE Trans. Wireless Commun., vol. 15, no. 12, Dec. 2016, pp. 8380–8393.
[14] J. Zhang, and K. B. Letaief, “Hybrid precoding in millimeter wave systems: How many phase shifters are needed?” in Proc. IEEE Global Commun. Conf., Dec. 2017, pp. 1–6.
[15] K. Satyanarayana, M. El-Hajjar, P.-H. Kuo, A. Mourad, and L. Hanzo, “Dual-function hybrid beamforming and transmit diversity aided millimeter wave architecture,” IEEE Trans. Veh. Technol., vol. 67, no. 3, Mar. 2018, pp. 2798–2803.
[16] Q. Spencer, B. Jeffs, M. Jensen, and A. Swindlehurst, “Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, Mar. 2000, pp. 347–360.
[17] J. Singh and S. Ramakrishna, “On the feasibility of codebook-based beamforming in millimeter wave systems with multiple antenna arrays,” IEEE Trans. Wireless Commun., vol. 14, no. 5, May 2015, pp. 2670–2683.
[18] H. Seleem, A. I. Sulyman, A. Alsanie, "Hybrid precoding-beamforming design with hadamard RF codebook for mmWave large-scale MIMO systems", IEEE Access, vol. 5, pp. 6813-6823, 2017.
[19] A. Goldsmith, S. Jafar, N. Jindal, S. Vishwanath, "Capacity limits of MIMO channels", IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684-702, 2003.
[20] A. M. Sayeed and N. Behdad, "Continuous Aperture Phased MIMO: Basic Theory and Applications," in Proc. Allerton Conf., Sept. 29-Oct. 1 2010, pp. 1196-1203.