研究生: |
林育仕 Lin, Yu-Shih |
---|---|
論文名稱: |
氮氧化矽薄膜之電阻式記憶體轉態特性探討與研究 Study on resistance switching characteristics in SiON thin film for resistive random access memory |
指導教授: |
葉鳳生
Yeh, Fon-Shan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 107 |
中文關鍵詞: | 電阻式記憶體 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,由於非揮發性記憶體的應用與發展備受矚目,加上快閃記憶體在微縮上遇到難以突破的瓶頸,所以新穎式非揮發性記憶體的研究與開發正蓬勃地展開。其中,電阻式非揮發性記憶體元件具有結構簡單、耗損能量低、操作電壓低、密度高、操作速度快、耐久度高、儲存時間長和非破壞性存取等優點,使其成為新穎式非揮發性記憶體元件的最熱門人選。
在本篇論文中,電阻式記憶體的轉態特性探討與研究著重於探討氮化鈦/氮氧化矽/銅/白金結構的電流傳導物理機制。其內容主要可以分為四大部分,包含不同上電極結構上的差異,亦或超薄氮氧化矽結構的特性與尺寸效應及上下電極都含有銅層的結構上的不同,來進一步檢視記憶體轉態的物理機制的研究。在利用不同上電極結構的部分,上電極利用不含銅層結構和擁有銅層結構來探討元件轉態的物理機制。其結果發現銅原子於元件操作時會擴散進氮氧化矽薄膜內並產生尖端電場效應,使得元件有較好的基本特性。經過電流-電壓曲線機制的探討並計算出有效的轉態區只有薄薄的一小層並位於氮化鈦和氮氧化矽的界面處。接著利用超薄氮氧化矽去驗證上述實驗的正確性,發現元件可以操作只是穩定度不佳,主要原因是缺乏銅擴散後的尖端電場效應。利用尺寸效應實驗發現,高電阻態的阻態會隨著元件的微縮而變大,而低電阻態並不會有變化。最後,利用上下電極都含有銅層的結構的實驗,再次證實銅擴散入氮氧化矽理論的正確性。
Recently, the conventional nonvolatile floating memory is expected to reach certain technical and physical limits in the future. In order to overcome this problem, alternative memory technologies have been extensively investigated, including ferroelectric random access memory (FeRAM), magneto resistive RAM (MRAM), phase-change RAM (PCRAM) and resistive RAM (RRAM).In all next generation nonvolatile memory, the resistive random access memories (RRAM) owing to the advantages of simple structure, lower consumption of energy, lower operating voltage, higher density, higher operating speed, higher endurance, higher storage time and non-destructive access which make it be the most popular candidate. In this thesis, we investigate and discuss the resistance switching current conduction mechanism for resistive random access memory of TiN/SiON/Cu/Pt structure RRAM device. The research can be split into four parts, the characteristic of RRAM devices with different top electrodes, the characteristics of ultra thin SiON film device, size effect and the device structure with copper layer at top and bottom electrode.
At the part of the characteristic of RRAM devices with different top electrodes, we employed the Pt top electrode or Pt/Cu top electrode to figure out the physical resistance switching mechanism. The results showed that the copper atom will be introduced to SiON film when the device operate applied with bias voltage and formed Cu filament that can be served as a stretched electrode stretched electrode. Thus, a large electrical field can be generated at the tip of the electrode when applying bias on the device, resulting in better resistance switching characteristics. By fitting the current-voltage curve, we can extract the effective thickness of resistance switching layer which is very thin and at the interface between SiON and TiN electrode.
Then, in order to verify the mechanism that we present, we fabricated a device with the ultra thin SiON film and Pt top electrode. The ultra thin SiON device present bipolar resistance switching characteristic, but the characteristic was more unstable than 38 nm SiON device with Pt/Cu top electrode. Because the ultra thin device was short of the tip electric field effect caused by Cu filament tip, the oxygen vacancies conduction path can be formed in anywhere of the SiON film and every circle of resistance switching may take place on different oxygen vacancies conduction path. At the part of size effect experiment, the resistance of high resistance state is dependent the area and the resistance of low resistance state is independent the area, this result conform to filament theory. Finial, we use the structure with copper layer as top and bottom electrode to confirm the correctness of mechanism of copper atom introduce to SiON.
Reference
[1] R. Waser, M. Aono, “Nanoionics-based resistive switching memories”, Nature materials, Vol. 6, 2007
[2] Gerhard Muller, Thomas Happ, Michael Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi, IEEE, 2004
[3] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,“先進記憶體簡介,國研科技創刊號,2004年
[4] I. G Baek, M.S.L., S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, IEDM Tech. Dig., 2005: p. 587-590
[5] 葉林秀、李佳謀、徐明豐、吳德和,“磁阻式隨機存取記憶體技術的發展—現在與未來”,物理雙月刊 廿六期四卷,2004年
[6] 劉志益、曾俊元,“電阻式非揮發性記憶體之近期發展”,電子月刊 第十一卷第四期,2005年
[7] http://theeestory.com/topics/4141
[8] A. Asamitsu, Y. Tomioka et al. “Current switching of resistive states in magnetoresistive manganites”, Nature 338 (3), 1997
[9] Y. Tokura, Y. Tomioka, “Colossal magnetoresistive manganites”, Mater, 200, 1, 1999
[10] S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films”, Applied Physics Letters, 76(19), 2000
[11] Akihito Sawa, “Resistive switching in transition metal oxide”, materials today, 11(6), 2008, p.28~36
[12] B. Sun, L. F. Liu, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han, 1. F. Kang, “Bipolar Resistive Switching Behaviors of Ag/SiN/Pt Memory Device”, IEEE, 2008
[13] Y. Sato, K. Kinoshita, M. Aoki, "Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model," Applied Physics Letters 90, 033503, 2007
[14] R. Waser, M. Aono, “Nanoionics-based resistive switching memories”, Nature materials, Vol. 6, 2007
[15] H. A. Fowler, J. E. Devaney, and J. G. Hagedorn, "Growth model for filamentary streamers in an ambient field," IEEE Transactions on Dielectrics and Electrical Insulation 10 (1), 73, 2003.
[16] K. M. Kim, B. J. Choi, B. W. Koo et al., "Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures”, Electrochemical and Solid State Letters 9 (12), G343, 2006.
[17] S. Seo, M. J. Lee, D. H. Seo et al., "Conductivity switching characteristics and reset currents in NiO films," Applied Physics Letters 86 (9), 093509, 2005.
[18] M. Fujimoto, H. Koyama et al., “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching ” , Applied Physics Letters, 89, 223509, 2006
[19] C. Yoshida, K. Tsunoda et al., “High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application”, Applied Physics Letters, 91, 2235110, 2007
[20] M. J. Rozenberg, I. H. Inoue et al., “Nonvolatile memory with Multilevel Switching: A Basic Model”, Physical Review Letter, 2004
[21] A. Sawa, T. Fujii, M. Kawasaki and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface”, Applied Physics Letters, 85(18), 2000
[22] A. Baikalov, Y. Q. Wang et al., “Field-Driven Hysteretic and Reversible Resistive Switch at the Ag-Pr0.7Ca0.3MnO3 Interface”, Applied Physics Letters, 83(5), 2003
[23] X. Chen, N. J. Wu et al., “Direct resistance profile for an electrical pulse induced resistance change device”, Applied Physics Letters, 87(23), 2005
[24] A. Beck, J. G. Bednorz et al., “Reproducible switching effect in thin oxide films for memory applications”, Applied Physics Letters, 77, 2000
[25] Chun-Chieh Lin, Bing-Chung Tu et al., “Resistive Switching Mechanisms of V-Doped SrZrO3 Memory Films”, IEEE, 2006
[26] L. P. Ma, J. Liu et al.,” Organic electrical bistable devices and rewritable memory cells”, Applied Physics Letters, 80(16), 2002
[27] S. Seo, M. J. Lee et al.,”Reproducible resistance switching in polycrystalline NiO films”, Applied Physics Letters, 85(23), 2004
[28] 施敏、伍國珏,“半導體元件物理學”,2008年