簡易檢索 / 詳目顯示

研究生: 李安庭
Lee, An-Ting
論文名稱: 鍺晶圓及氧化亞銅-矽晶圓之晶面電導效應與尺寸控制硫化鋅粒子的探討
Facet-Dependent Electrical Conductivity Properties of Ge Wafers and Cu2O Crystals on Si Wafers, and Size-Controlled Synthesis of ZnS Particles
指導教授: 黃暄益
Huang, Michael Hsuan-Yi
口試委員: 段興宇
Tuan, Hsin-Yu
吳欣倫
Wu, Hsin-Lun
吳文偉
Wu, Wen-Wei
呂明諺
Lu, Ming-Yen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 83
中文關鍵詞: 能帶結構電導性晶面特性場效電晶體異型異質接面整流效果硫化鋅奈米晶體
外文關鍵詞: Band structures, Electrical conductivity, Facet-dependent properties, Field-effect transistors, Germanium, Heterojunction, Rectifying effect, ZnS nanocrystals
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於幾十年來現代技術的發展使得半導體材料備受重視。與塊狀材料相比,奈米尺度的結構展現出其化學與物理性質的獨特性,特別是奈米粒子。大多數關於奈米粒子的研究聚焦在量子侷限效應以及尺寸效應。然而,對於單晶結構,獨特的晶面效應不僅存在於光學性質,還存在於電學行為中。尺寸效應可以簡單地透過光學儀器如紫外-可見光光譜儀或光致發光光譜儀來檢測,相反的是,晶面效應反倒不容易觀察。近年來,許多探討奈米粒子晶面電學效應的研究已被發表。在這些研究當中,指出晶面效應普遍存在於具有明確晶面的奈米粒子中。在本論文當中,我們證明了晶面效應存在於類金屬鍺半導體晶圓之中。此外,藉由兩種不同晶體的半導體材料組合中完成了晶面效應相關的異質接面電學行為的研究。最後,我們合成了具備形狀且尺寸可調的硫化鋅奈米粒子,並討論其光學相關的性質。
    在第一章中,我們針對鍺晶圓進行了導電度的量測。在密度泛函理論計算和量測的結果中可以得知鍺{111}與{211}的晶面具有最大的導電度,其次是中導電度的{110}面,最後是低導電度的{100}面。在鍺晶圓觀察到的晶面電導效應說明晶面效應不僅存在於較大能隙的半導體材料中,也存在於較小能隙的材料如鍺之中。與矽晶圓相比,儘管鍺與矽具有類似的結構特性,但其晶面電導效應的結果卻不完全相同,再一次證明了晶面電導效應若非經過實際的量測,不能預測其效應為何。基於在鍺晶圓相異晶面所量測到的非對稱電壓-電流圖中觀察到了其電流整流特性。在考量其電流流動方向以及所量測的晶面為前提下,可以藉由調整過的能帶彎曲圖來解釋。此外,有鑑於其特殊的整流能力,我們也提出了一種基於晶面電導效應的新型鰭式場效電晶體設計概念。
    在第二章中,我們利用導電原子力顯微鏡證明了以立方體、八面體、菱形十二面體的氧化亞銅與矽{100}、{110}、{111}晶圓的交叉組合中的光電流和異質介面電流特性。將合成出不同形狀的氧化亞銅奈米粒子分別分散在不同矽晶圓上,利用導電原子力顯微鏡量測其電流-電壓曲線。在氧化亞銅立方體以及矽{100}晶圓的組合下觀察到最大的光電流。而在氧化亞銅八面體/矽{100}晶圓,氧化亞銅立方體/矽{110}晶圓與氧化亞銅立方體/矽{111}晶圓的組合中觀察到可利用的異質介面電流特性,電流方向皆為氧化亞銅流向矽晶圓,反之則沒有觀察到電流。而在氧化亞銅八面體/矽{111}晶圓的組合中觀察對稱且高電流的電流-電壓曲線,這是由於氧化亞銅八面體與矽{111}晶圓皆具有高導電性。透過光的照射下,在氧化亞銅菱形十二面體/矽{111}晶圓的組合中觀察到了9倍的光電流增強。修改後的能帶圖可以幫助我們了解這些電流特性,能帶圖主要專注在半導體異質介面上介面層的能帶彎曲。根據此一研究結果,可以幫助了解半導體中晶面效應在電學行為上的表現,並且提供電晶體一個新穎且巧妙的設計。
    在第三章中,我們嘗試提出了一個簡單且快速方法合成具形狀控制且尺寸可調的具閃鋅礦結構之硫化鋅奈米粒子,粒徑由40奈米至110奈米。硫化鋅奈米粒子由溶解醋酸鋅以及硫乙醯胺並加入醋酸在攝氏120度下反應10至20分鐘沉澱而來。醋酸的添加可以降低醋酸鋅以及硫乙醯胺的溶解度,進一步影響硫化鋅的反應速率。雖然硫化鋅奈米粒子的形狀只有準截半立方體,且因為其多晶的性質使得光學計算出的能隙並不是那麼有用,但尺寸對光學吸收波段影響還是有被觀察到,進一步證明較大的半導體硫化鋅粒子仍具有吸收偏移的現象,意義在於當硫化鋅粒子尺寸遠大於其波爾半徑時,其光學吸收波段仍具有紅位移的現象,而不受限於典型量子侷限效應其固定吸收波段的特性。


    Semiconductor materials have been central to the development of modern technology for decades. Compare to the bulk materials, nanoscale structures exhibit unique physical and chemical properties. Most studies have discussed the quantum confinement and size-dependent effects using spherical models. However, for single crystals, the facet-dependent effects exist not only in optical properties and also in electrical conductivity behaviors. In this dissertation, facet-dependent conductivity properties of germanium wafers have been measured. By placing a Cu2O crystal on a Si wafer, the facet-dependent, or interfacial plane-dependent, conductivity properties have been thoroughly investigated. Finally, cubic phase zinc sulfide nanoparticles with tunable sizes have been synthesized for optical property examination.
    In Chapter 1, we have performed the electrical conductivity measurements on the Ge wafer. Supported by the DFT calculations and measurements, the Ge {111} and Ge {211} facets are much more conductive than the Ge {110} facet and the least conductive Ge {100} facet. These results demonstrate the facet-dependent electrical properties exist not only in the semiconductor materials with larger band gap but also in germanium with a small band gap of 0.67 eV. For silicon and germanium, the exact facet-dependent conductivity properties are not quite the same, once again showing the unpredictability of facet-dependent electrical properties. Based on the obtained asymmetric I-V curves, the current-rectifying behaviors in different facet combinations of Ge wafer have been observed. These phenomena can be explained by an adjusted band bending diagram with the consideration of current flow directions and contact surfaces. We have also proposed a novel concept for finFET design based on the facet-dependent electrical properties.
    In Chapter 2, we have used conductive atomic force microscopy to probe the conductivity properties of a single Cu2O cube, octahedron, and rhombic dodecahedron on Si {100}, {110}, and {111} wafers. The synthesized Cu2O crystals were dispersed on different facets of Si wafers without any assistance of chemicals. Light illumination revealed photocurrent enhancement is mainly observed the combination of Cu2O cube/Si {100} wafer. Several combinations show the asymmetric I-V curves with high current, resembling p-n junctions in transistors. The useful heterojunctions are observed for the combinations of Cu2O octahedron/Si {110} wafer, Cu2O cube/Si {110} wafer, and Cu2O cube/Si {111} wafer. No current was observed for current flowing from Si wafer to Cu2O particle. For the combination of Cu2O octahedron/Si {111} wafer, the symmetric I-V curve with high current was observed since both the Cu2O octahedron and Si {111} facet are highly conductive. With light irradiation, about 9 time photocurrent enhancement was observed for the combination of Cu2O rhombic dodecahedron/Si {111} wafer. Modified band diagrams have been constructed to understand these electrical behaviors focusing mainly on the interfacial layer/plane bending at the semiconductor heterojunctions. This work extends our knowledge about facet-dependent electronic properties of semiconductor, and demonstrates a novel and clever transistor design.
    In Chapter 3, a simple and fast method for the synthesis of quasi-cuboctahedral zinc blende zinc sulfide nanoparticles with tunable particle diameters in the range of 40 nm to 110 nm is presented. ZnS nanoparticles are produced by dissolving zinc acetate and thioacetamide (TAA) in the presence of acetic acid at 120 ºC for 10–20 min. The addition of acetic acid decreases the solubility of both zinc acetate and TAA to influence the reaction rate of ZnS. Although the determined band gap values are not so useful due likely to the polycrystalline nature of the particles, size-dependent light absorption bands still have been observed. The fact light absorption is still shifting for large ZnS crystals shows our understanding of quantum confinement effects with fixed band positions for particles with sizes much beyond Bohr radius is limited.

    論文摘要 i ABSTRACT iv CONTENTS vii LIST OF FIGURES xi LIST OF SCHEMES xviii LIST OF TABLES xix Chapter 1 Germanium Wafers Possess Facet-Dependent Electrical Conductivity Properties 1.1 Introduction 1 1.2 Experimental 4 1.2.1 Reagents 4 1.2.2 Instrumentation 4 1.2.3 Sample preparation of germanium wafer 4 1.2.4 Homemade tungsten probes 5 1.2.5 Setup of conductivity measurements 5 1.2.6 Conductivity measurements 6 1.3 Results and discussion 6 1.4 Conclusion 18 1.5 References 19 1.6 Declaration of contribution 23 Chapter 2 Photo-responsive Current and Facet-Dependent Electrical Properties of Cu2O-Si Heterojunctions Investigated by Conductive Atomic Force Microscopy 2.1 Introduction 25 2.2 Experimental Section 29 2.2.1 Chemicals and materials 29 2.2.2 Synthesis of Cu2O nanocrystals 30 2.2.3 Sample preparation for photo-responsive conductivity measurements 31 2.2.4 Instrumentation 32 2.2.5 White light-emitting diode (LED) information 33 2.2.6 Sample configuration in photo-responsive conductivity measurements 34 2.3 Results and Discussion 35 2.3.1 Cu2O nanocrystals and Si wafers 35 2.3.2 The combination of Cu2O nanocrystals and Si {100} wafer 41 2.3.3 The combination of Cu2O nanocrystals and Si {110} wafer 47 2.3.4 The combination of Cu2O nanocrystals and Si {111} wafer 53 2.4 Conclusions 58 2.5 References 59 Chapter 3 One-pot Synthesis of Size-tunable Zincblende ZnS Nanocrystals in Aqueous Phase and Their Optical Properties 3.1 Introduction 65 3.2 Paper review 68 3.3 Experimental Section 70 3.3.1 Chemicals 70 3.3.2 Synthesis of ZnS nanocrystals with tunable sizes 70 3.3.3 Instrumentation 71 3.4 Results and Discussion 72 3.5 Conclusion 79 3.6 References 80

    (1) Tan, C. -S.; Hsu, S. -C.; Ke, W. -H.; Chen, L. -J.; Huang, M. H. Facet-dependent electrical conductivity properties of Cu2O crystals. Nano Lett. 2015, 15, 2155–2160.
    (2) Liu, G.; Yin, L.-C.; Pan, J.; Li, F.; Wen, L.; Zhen, C.; Cheng, H.-M. Greatly enhanced electronic conduction and lithium storage of faceted TiO2 crystals supported on metallic substrates by tuning crystallographic orientation of TiO2. Adv. Mater. 2015, 27, 3507–3512.
    (3) Kim, C. W.; Yeob, S. J.; Cheng, H. -M.; Kang, Y. S. A selectively exposed crystal facet-engineered TiO2 thin film photoanode for the higher performance of the photoelectrochemical water splitting reaction. Energy Environ. Sci. 2015, 8, 3646–3653.
    (4) Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-dependent electrical conductivity properties of PbS nanocrystals. Chem. Mater. 2016, 28, 1574–1580.
    (5) Tan, C.-S.; Chen, Y.-J.; Hisa, C.-F.; Huang, M. H. Facet-dependent electrical conductivity properties of silver oxide crystals. Chem. Asian J. 2017, 12, 293–297.
    (6) Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 crystals with tunable shapes for facet-dependent optical property, photocatalytic activity, and electrical conductivity examinations. ACS Appl. Mater. Interfaces 2017, 9, 39086–39093.
    (7) Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J.; Ye, Y. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 6490–6492.
    (8) Xie, Y. P.; Liu, G.; Yin, L.; Cheng, H.-M. Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J. Mater. Chem. 2012, 22, 6746–6751.
    (9) Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Facet-dependent photocatalytic properties of TiO2-based composites for energy conversion and environmental remediation. ChemSusChem 2014, 7, 690–719.
    (10) Kwon, Y.; Soon, A.; Han, H.; Lee, H., Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting. J. Mater. Chem. A, 2015, 3, 156–162.
    (11) Yuan, G.-Z.; Hsia, C.-F.; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H. Highly facet-dependent photocatalytic properties of Cu2O crystals established through the formation of Au-decorated Cu2O heterostructures. Chem.–Eur. J., 2016, 22, 12548–12556.
    (12) Chu, C.-Y.; Huang, M. H. Facet-dependent photocatalytic properties of Cu2O crystals probed by using electron, hole and radical scavengers. J. Mater. Chem. A 2017, 5, 15116–15123.
    (13) Wu, S.-C.; Tan, C.-S.; Huang, M. H. Strong facet effects on interfacial charge transfer revealed through the examination of photocatalytic activities of various Cu2O–ZnO heterostructures. Adv. Funct. Mater. 2017, 27, 1604635.
    (14) Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Control of thickness and orientation of solution-grown silicon nanowires. Science 278, 1471–1473.
    (15) Rej, S.; Wang, H.-J.; Huang, M.-X.; Hsu, S.-C.; Tan, C.-S.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Facet-dependent optical properties of Pd–Cu2O core–shell nanocubes and octahedra. Nanoscale 2015, 7, 11135–11141.
    (16) Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Facet-dependent optical and photothermal properties of Au@Ag−Cu2O core−shell nanocrystals. Chem. Mater. 2016, 28, 5140–5146.
    (17) Vybornyi, O.; Yakunin, S.; Kovalenko, M. V. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals. Nanoscale 2016, 8, 6278–6283.
    (18) Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang. M. H. Synthesis of ultrasmall Cu2O nanocubes and octahedra with tunable sizes for facet-dependent optical property examination. Small 2016, 12, 3530–3534.
    (19) Tan, C.-S.; Hsieh, P.-L.; Chen, L.-J.; Huang, M. H. Silicon wafers with facet-dependent electrical conductivity properties. Angew. Chem. Int. Ed. 2017, 56, 15339–15343.
    (20) Chen, L.; Dong, P.; Lipson, M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Opt. Express 2008, 16, 11513–11518.
    (21) Kurdi, M. E.; David, S.; Checoury, X.; Fishman, G.; Boucaud, P.; Kermarrec. O.; Bensahel, D.; Ghyselen, B. Two-dimensional photonic crystals with pure germanium-on-insulator. Opt. Commun. 2008, 281, 864–850.
    (22) Chen, L.; Lipson, M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Opt. Express 2009, 17, 7901–7906.
    (23) Zhang, L.; Agarwal, A. M.; Kimerling, L. C.; Michel, J. Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics 2014, 3, 247–268.
    (24) Tan, C.-S.; Huang, M. H. Density functional theory calculations revealing metal-like band structures for ultrathin germanium (111) and (211) surface layers. Chem. Asian J. 2018, 13, 1972–1976.
    (25) Sze, S. M. Semiconductor devices: physics and technology, 2nd ed.; John Wiley: New Delhi, 2008.
    (26) Jaeger, R. C.; Motalab, M.; Hussain, S.; Suhling, J. C. Four-wire bridge measurements of silicon van der Pauw stress sensors. J. Electron. Packag. 2014, 136, 041014.
    (27) Chaabane, I; Banerjee, D.; Touayar, O.; Cloutier, S. G. Shallow V-shape nanostructured Pit arrays in germanium using aqua regia electroless chemical etching. Materials 2017, 10, 854.
    (28) Wang, W.; Lei, D.; Dong, Y.; Gong, X.; Tok, E. S.; Yeo, T.-C. Digital etch technique for forming ultra-scaled germanium-tin (Ge1−xSnx) fin structure. Sci. Rep. 2017, 7, 1835.
    (29) Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-dependent electrical conductivity properties of Cu2O crystals. Nano Lett. 2015, 15, 2155–2160.
    (30) Liu, G.; Yin, L.-C.; Pan, J.; Li, F.; Wen, L.; Zhen, C.; Cheng, H.-M. Greatly enhanced electronic conduction and lithium storage of faceted TiO2 crystals supported on metallic substrates by tuning crystallographic orientation of TiO2. Adv. Mater. 2015, 27, 3507–3512.
    (31) Kim, C. W.; Yeob, S. J.; Cheng, H.-M.; Kang, Y. S. A selectively exposed crystal facet-engineered TiO2 thin film photoanode for the higher performance of the photoelectrochemical water splitting reaction. Energy Environ. Sci. 2015, 8, 3646–3653.
    (32) Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-dependent electrical conductivity properties of PbS nanocrystals. Chem. Mater. 2016, 28, 1574–1580.
    (33) Tan, C.-S.; Chen, Y.-J.; Hisa, C.-F.; Huang, M. H. Facet-dependent electrical conductivity properties of silver oxide crystals. Chem. Asian J. 2017, 12, 293–297.
    (34) Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 crystals with tunable shapes for facet-dependent optical property, photocatalytic activity, and electrical conductivity examinations. ACS Appl. Mater. Interfaces 2017, 9, 39086–39093.
    (35) Ho, J.-Y.; Huang, M. H. J. Phys. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. Chem. C 2009, 113, 14159–14164.
    (36) Yuan, G.-Z.; Hsia, C.-F.; Lin, Z.-W.; Chiang, Y.-W.; Huang, M. H. Highly facet-dependent photocatalytic properties of Cu2O crystals established through the formation of Au-decorated Cu2O heterostructures. Chem. Eur. J. 2016, 22, 12548–12556.
    (37) Wu, S.-C.; Tam, C.-S.; Huang, M. H. Strong facet effects on interfacial charge transfer revealed through the examination of photocatalytic activities of various Cu2O–ZnO heterostructures. Adv. Funct. Mater. 2017, 27, 1604635.
    (38) Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W. Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity. J. Phys. Chem. C. 2010, 114, 5073–5079.
    (39) Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. Synthesis of diverse Ag2O crystals and their facet-dependent photocatalytic activity examination. ACS Appl. Mater. Interfaces, 2016, 8, 19672–19679.
    (40) Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J.; Ye, J. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 6490–6492.
    (41) Saian, C. P.; Wageh, S.; Al-Ghamdi. A. A.; Yu, J.; Cao. S. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3–27.
    (42) Chu, C.-Y.; Huang, M. H. Facet-dependent photocatalytic properties of Cu2O crystals probed by using electron, hole and radical scavengers. J. Mater. Chem. A 2017, 5, 15116–15123.
    (43) Ke, W.-H.; Hsia. C.-F.; Chen, Y.-J.; Huang, M. H. Synthesis of ultrasmall Cu2O nanocubes and octahedra with tunable sizes for facet-dependent optical property examination. Small 2016, 12, 3530–3534.
    (44) Huang, M. H.; Rej, S.; Chiu, C.-Y. Facet-dependent optical properties revealed through investigation of polyhedral Au–Cu2O and bimetallic core–shell nanocrystals. Small 2015, 11, 2716–2726.
    (45) Wang, H.-J.; Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Photothermal effects from Au–Cu2O core–shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability. Nanoscale 2016, 8, 965–972.
    (46) Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Facet-dependent optical and photothermal properties of Au@Ag−Cu2O core−shell nanocrystals. Chem. Mater. 2016, 28, 5140–5146.
    (47) Zhang, P.; Kim, S.; Fujitsuka, M.; Majima, T. Controllable nanothorns on TiO2 mesocrystals for efficient charge separation in hydrogen evolution. Chem. Commun. 2017, 53, 5306–5309.
    (48) Tan, C.-S.; Hsieh, P.-L.; Chen, L.-J.; Huang, M. H. Silicon wafers with facet-dependent electrical conductivity properties. Angew. Chem. Int. Ed. 2017, 56, 15339–15343.
    (49) Hsieh, P.-L.; Lee, A.-T.; Chen, L.-J.; Huang, M. H. Germanium wafers possessing facet-dependent electrical conductivity properties. Angew. Chem. Int. Ed. 2018, 57, 16162–16165.
    (50) Tan, C.-S.; Huang, M. H. Metal-like band structures of ultrathin Si {111} and {112} surface layers revealed through density functional theory calculations. Chem. Eur. J. 2017, 23, 11866–11871.
    (51) Tan, C.-S.; Huang, M. H., Density functional theory calculations revealing metal like band structures for ultrathin germanium (111) and (211) suface layers. Chem. Asian. J. 2018, 13, 1972–1976.
    (52) Huang, J.-Y.; Hsieh, P.-L.; Naresh, G.; Tsai, H.-Y.; Huang, M. H. Photocatalytic activity suppression of CdS nanoparticle-decorated Cu2O octahedra and rhombic dodecahedra. J. Phys. Chem. C 2018, 122, 12944–12950.
    (53) Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J.; Lo, Y.-C.; Huang, M. H. Facet-dependent photocatalytic behaviors of ZnS-decorated Cu2O polyhedra arising from tunable interfacial band alignment. ACS Appl. Mater. Interfaces 2019, 11, 3582–3589.
    (54) Naresh, G.; Lee, A.-T.; Meena, V.; Satyanarayana, M.; Huang, M. H. Photocatalytic activity suppression of Ag3PO4‑deposited Cu2O octahedra and rhombic dodecahedra J. Phys. Chem. C 2019, 123, 2314–2320.
    (55) Mocatta, D.; Cohen, G.; Schattner, J.; Millo, O.; Rabani, E.; Banin, U. Heavily doped semiconductor nanocrystal quantum dots. Science 2011, 332, 77–81.
    (56) Jiang, X.; Liu, H.; Zhang, X.; Cheng, G.; Wang, S.; Du, Z. A direct investigation of photocharge transfer across monomolecular layer between C60 and CdS quantum dots by photoassisted conductive atomic force microscopy. AIP Adv. 2016, 6, 045012.
    (57) Beinik, I.; Kratzer, M.; Wachauer, A.; Wang, L.; Lechner, R. T.; Teichert, C.; Motz, C.; Anwand, W.; Brauer, G.; Chen, X. Y.; Hsu, X. Y.; Djurisic, A. B. Electrical properties of ZnO nanorods studied by conductive atomic force microscopy. J. Appl. Phys. 2011, 110, 052005.
    (58) Steiner, D.; Dorfs, D.; Banin, U.; Sala, F. D.; Manna, L.; Millo, O. Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy. Nano Lett. 2008, 8, 2954–2958.
    (59) Ma, J. -Y.; Ding, J.; Yan, H. -J.; Wang, D.; Hu, J. -S. Temperature-dependent local electrical properties of organic−inorganic halide perovskites: in situ KPFM and c‑AFM investigation. ACS Appl. Mater. Interfaces 2019, 11, 21627–21633.
    (60) Chen, K.; Li, M.; Xian, P.; Johnsen, A. Design of LED constant current controller using multi-channel current-sharing topology. Microelectron. J. 2016, 57, 52–59.
    (61) Yang, Y.; Xue, S.; Liu, S. Fabrication and characteristics of ZnS nanocrystals/polymer composite doped with tetraphenylbenzidine single layer structure light-emitting diode. Appl. Phys. Lett. 1996, 69, 377–379.
    (62) Ke, W.; Stoumpos, C. C.; Logsdon, J. L.; Wasielewski, M. R.; Yan, Y.; Fang, G.; Kanatzidis, G. TiO2−ZnS cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 14998–15003.
    (63) Iwase, A.; Li, K.; Kudo, A. Decomposition of an aqueous ammonia solution as a photon energy conversion reaction using a Ru-loaded ZnS photocatalyst. Chem. Commun. 2018, 54, 6117–6119.
    (64) Lee, G.-J.; Anandan, S.; Masten, S. J.; Wu, J. J. Photocatalytic hydrogen evolution from water splitting using Cu doped ZnS microspheres under visible light irradiation. Renew. Energy 2016, 89, 18–26.
    (65) Saleh, M.; Lynn, K. G.; McCloy, J. S. Evaluation of undoped ZnS single crystal materials for x-ray imaging applications. Proc. SPIE 2017, 1017904.
    (66) Dabbousi, B. O.; Rodriguez-Virjo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.
    (67) Cassette, E.; Pons, T.; Bouet, C.; Helle, M.; Bezdetnaya, L.; Marchal, F.; Dubertret, B. Synthesis and characterization of near-infrared Cu-In-Se/ZnS core/shell quantum dots for in vivo imaging. Chem. Mater. 2010, 22, 6117–6124.
    (68) Chantada-Vazquez, M. P.; Sanchez-Gonzalez, J.; Pena-Vazquez, E.; Tabernero, M. J.; Bermejo, A. M.; Bermejo-Barrera, P.; Moreda-Pineiro, A. Synthesis and characterization of novel molecularly imprinted polymer-coated Mn-doped ZnS quantum dots for specific fluorescent recognition of cocaine. Biosens Bioelectron. 2016, 75, 213–221.
    (69) Hussain, S.; Won, N.; Nam, J.; Bang, J.; Chung, H.; Kim, S. One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging. ChemPhysChem 2009, 10, 1466–1470.
    (70) Moore, D.; Wang, Z. L. Growth of anisotropic one-dimensional ZnS nanostructures. J. Mater. Chem. 2006, 16, 3898–3905.
    (71) Vishwakarma, K. Study of structural and optical properties of ZnS nanoparticles. Asian J. Chem. 2013, 25, S45–S47.
    (72) Liu, K.; Li, J.; Liu, Q.; Meng, M.; Hu, L.; Xu, C. Two-photon absorption induced photoluminescence from ZnS nanowires. J. Alloys Compd. 2017, 718, 122–125.
    (73) Navaneethan, M.; Archana, J.; Nisha, K. D.; Ponnusamy, S.; Arivanandhan, M.; Hayakawa, Y.; Muthamizhchelvan, C. Synthesis of wurtzite ZnS nanorods by microwave assisted chemical route. Mater. Lett. 2012, 66, 276–279.
    (74) Xiao, N.; Dai, Q.; Wang, Y.; Ning, J.; Liu, B.; Zou, G.; Zou, B. ZnS nanocrystals and nanoflowers synthesized by a green chemistry approach: Rare excitonic photoluminescence achieved by the tunable molar ratio of precursors. J. Hazard. Mater. 2012, 211–212, 62–67.
    (75) Shakouri-Arani, M.; Salavati-Niasari, M. Synthesis and characterization of wurtzite ZnS nanoplates through simple solvothermal method with a novel approach. J. Ind. Eng. Chem. 2014, 20, 3179–3185.
    (76) Huang, X.; Wang, M.; Willinger, M.; Shao, L.; Su, D. S.; Meng, X.-M. Assembly of three-dimensional hetero-epitaxial ZnO/ZnS core/shell nanorod and single crystalline hollow ZnS nanotube arrays. ACS Nano 2012, 6, 7333–7339.
    (77) Mendil, R.; Ayadi, Z. B.; Djessas, K. Effect of solvent medium on the structural, morphological and optical properties of ZnS nanoparticles synthesized by solvothermal route. J. Alloys Compd. 2016, 678, 87–92.
    (78) Li, Y.; Zhang, L.; Kisslinger, K.; Wu, Y. Green phosphorescence of zinc sulfide optical ceramics. Opt. Mater. Express 2014, 4, 1140–1150.
    (79) Deepa, K. G.; Sunil, A. M.; Nagaraju, J. Highly transparent ZnS buffer layer prepared by ultrasonic spray pyrolysis for photovoltaic applications. J. Anal. Appl. Pyrol. 2017, 126, 188–193.
    (80) Xaua, T.-T.; Liu, J.-Q.; Xie, R.-J.; Li, H.-L.; Sun, Z. Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition. Chem. Mater. 2015, 27, 1187–1193.
    (81) Deka, D. C.; Kalita, A.; Bardaloi, S.; Kalita, M. P. P. Influence of capping agent on structural, optical and photocatalytic properties of ZnS nanocrystals. J. Lumin. 2019, 210, 269–275.
    (82) Eshuis, A.; van Elderen, G. R. A.; Koning, C. A. A descriptive model for the homogeneous precipitation of zinc sulfide from acidic zinc salt solutions. J. Colloids Surf. A 1999, 151, 505–512.
    (83) Hoa, T. T. Q.; Vu, L. V.; Canh, T. D.; Long, N. N. Preparation of ZnS nanoparticles by hydrothermal method. J. Phys. Conf. Ser. 2009, 187, 012081.
    (84) Fang, J.; Holloway, P. H.; Yu, J. E.; Jones, K. S. MOCVD growth of non-epitaxial and epitaxial ZnS thin films. Appl. Surf. Sci. 1993, 70, 701‒706.
    (85) Tan, M.; Cai, W.; Zhang, L. Optical absorption of ZnS nanocrystals inside pores of silica. Appl. Phys. Lett. 1997, 71, 3697–3699.

    QR CODE