研究生: |
呂英震 Ying-Jen Leu |
---|---|
論文名稱: |
牛蛙核醣核酸水解酵素作用機制之探討 Characterizations of enzymatic properties and specificities of cytotoxic ribonucleases from Rana catesbeiana (bullfrog) |
指導教授: |
林立元
Lih-Yuan Lin |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 165 |
中文關鍵詞: | 牛蛙 、核醣核酸水解酵素 、酵素專一性 、細胞毒性 、晶體結構 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
核醣核酸水解酵素普遍存在於自然界中,而且對核醣核酸的代謝非常重要。近年來科學家發現屬於牛胰臟核醣核酸水解酵素(RNase A)群的酵素,不但具有酵素活性而且具有許多其他的生化功能。我們實驗室自牛蛙中也純化出8種具有細胞毒性的核醣核酸水解酵素,由序列分析顯示他們也都是屬於RNase A核醣核酸水解酵素群的成員。為了瞭解這些蛙類核醣核酸水解酵素和其他RNase A核醣核酸水解酵素群成員間的異同點,首先我們分析這些酵素的特性。結果發現這些蛙卵中的核醣核酸水解酵素胺基酸序列相似度都很高,他們的酵素比活性差距很大、最佳反性酸鹼值分佈很廣、專一性不一、細胞毒性也不相同。但是反應過程都不需要離子的參與,對熱的穩定性也都高於RNase A。接著我們進一步分離這些核醣核酸水解酵素的基因,並且利用點突變、大腸桿菌製造和管柱層析法純化的技術得到突變蛋白,分別測試突變蛋白酵素活性、專一性和動力學的變化。另外依據牛蛙RC-RNase和受質類似物的晶體結構,我們得以了解RC-RNas與受質間的作用機制,結果發現RC-RNase的Pyr1參與酵素活性及專一性;Lys9、His10、Lys35和His103參與P1活性區;Thr39、Thr70和Phe104參與B1受質結合區,其中Thr39直接與受質結合,Thr70透過Thr39影響受質專一性,而Phe104與受質為疏水性作用。Lys95和Glu97參與B2受質結合區,其中Lys95與受質結合,而Glu97不但與受質結合,同時也會固定Lys95支鏈的位置。由這些結果我們得以進一步了解這些蛙類核醣核酸水解酵素的作用機制。
Ribonucleases are widely found in prokaryotes and eukaryotes and play an important role in RNA metabolism. Several ribonucleases in the RNase A superfamily not only possess ribonucleolytic activity but also exhibit other functions. In our laboratory, eight different ribonucleases were isolated from Rana catesbeiana (bullfrog). They show sequence homology to the RNase A superfamily. A series of biochemical and biophysical analyses have been exploited to characterize these novel ribonucleases. Although these ribonucleases have some characteristics in common, such as high thermo stability and lack of ions in their enzymatic reaction, they are different in catalytic activities, optimal pH values for enzyme activities, substrate specificities and cytotoxicities. To further investigate the mechanisms of substrate recognition, their cDNAs were cloned. Recombinant wild-type and mutant proteins were produced in Escherichia coli and subjected to analyses of enzyme activity, substract specificity and kinetics. Cocrystalization of RC-RNase□d(ACGA) further revealed the mechanism of substrate specificity determination in more detail. Pyr1 is involved in both enzyme activity and substrate specificity. The residues of Lys9, His10, Lys35 and His103 contribute to the P1 active site. RC-RNase contains two base binding pockets, B1 and B2. In the B1 site, Thr39 directly binds to the substrate, whereas Thr70 influences the substrate specificity through Thr39 and Phe104 works through the hydrophobic reaction with the substrates. In the B2 site, both Lys95 and Glu97 bind to the substrate and Glu97 also supports the side chain of Lys95. With these results, we established the relationship between ribonucleases and their substrates for further investigation.
1. Platt, T. (1986) Transcription termination and the regulation of gene expression. Annu Rev Biochem 55, 339-372
2. Ehretsmann, C. P., Carpousis, A. J., and Krisch, H. M. (1992) mRNA degradation in procaryotes. Faseb J 6, 3186-3192
3. Green, M. R. (1986) Pre-mRNA splicing. Ann Rev Genet 20, 671-708
4. D'Alessio, G. (1993) New and cryptic biological messenges from RNase. Trend Cell Biol 3, 106-109
5. Barnard, E. A. (1969) Biological function of pancreatic ribonuclease Nature 221, 340-344.
6. Gleich, G. J., Loegering, D. A., Bell, M. P., Checkel, J. L., Ackerman, S. J., and McKean, D. J. (1986) Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease Proc Natl Acad Sci U S A 83, 3146-3150.
7. Domachowske, J. B., Bonville, C. A., Dyer, K. D., and Rosenberg, H. F. (1998) Evolution of antiviral activity in the ribonuclease A gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus Nucleic Acids Res 26, 5327-5332.
8. Domachowske, J. B., Dyer, K. D., Adams, A. G., Leto, T. L., and Rosenberg, H. F. (1998) Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity Nucleic Acids Res 26, 3358-3363.
9. Domachowske, J. B., Dyer, K. D., Bonville, C. A., and Rosenberg, H. F. (1998) Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus J Infect Dis 177, 1458-1464.
10. Sorrentino, S., Glitz, D. G., Hamann, K. J., Loegering, D. A., Checkel, J. L., and Gleich, G. J. (1992) Eosinophil-derived neurotoxin and human liver ribonuclease. Identity of structure and linkage of neurotoxicity to nuclease activity J Biol Chem 267, 14859-14865.
11. Domachowske, J. B., and Rosenberg, H. F. (1997) Eosinophils inhibit retroviral transduction of human target cells by a ribonuclease-dependent mechanism J Leukoc Biol 62, 363-368.
12. Molina, H. A., and Kierszenbaum, F. (1988) Immunohistochemical detection of deposits of eosinophil-derived neurotoxin and eosinophil peroxidase in the myocardium of patients with Chagas' disease Immunology 64, 725-731.
13. Rosenberg, H. F. (1995) Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity J Biol Chem 270, 7876-7881.
14. Fett, J. W., Strydom, D. J., Lobb, R. R., Alderman, E. M., Bethune, J. L., Riordan, J. F., and Vallee, B. L. (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells Biochemistry 24, 5480-5486.
15. Hallahan, T. W., Shapiro, R., and Vallee, B. L. (1991) Dual site model for the organogenic activity of angiogenin Proc Natl Acad Sci U S A 88, 2222-2226.
16. Shimoyama, S., Gansauge, F., Gansauge, S., Negri, G., Oohara, T., and Beger, H. G. (1996) Increased angiogenin expression in pancreatic cancer is related to cancer aggressiveness Cancer Res 56, 2703-2706.
17. Chopra, V., Dinh, T. V., and Hannigan, E. V. (1997) Serum levels of interleukins, growth factors and angiogenin in patients with endometrial cancer J Cancer Res Clin Oncol 123, 167-172.
18. Olson, K. A., Fett, J. W., French, T. C., Key, M. E., and Vallee, B. L. (1995) Angiogenin antagonists prevent tumor growth in vivo Proc Natl Acad Sci U S A 92, 442-446.
19. D'Alessio, D., and Leone, E. (1963) The action of seminal enzymes on ribonucleic acid. Biochem. J. 89, 7P
20. Hosokawa, S., and Irie, M. (1971) Purification and properties of seminal vesicle ribonucleases J Biochem (Tokyo) 69, 683-697
21. De Prisco, R., Sorrentino, S., Leone, E., and Libonati, M. (1984) A ribonuclease from human seminal plasma active on double-stranded RNA Biochim Biophys Acta 788, 356-363.
22. Piccoli, R., Tamburrini, M., Piccialli, G., Di Donato, A., Parente, A., and D'Alessio, G. (1992) The dual-mode quaternary structure of seminal RNase Proc Natl Acad Sci U S A 89, 1870-1874.
23. Lee, F. S., and Vallee, B. L. (1993) Structure and action of mammalian ribonuclease (angiogenin) inhibitor Prog Nucleic Acid Res Mol Biol 44, 1-30.
24. Kobe, B., and Deisenhofer, J. (1995) A structural basis of the interactions between leucine-rich repeats and protein ligands Nature 374, 183-186.
25. Tamburrini, M., Scala, G., Verde, C., Ruocco, M. R., Parente, A., Venuta, S., and D'Alessio, G. (1990) Immunosuppressive activity of bovine seminal RNase on T-cell proliferation Eur J Biochem 190, 145-148
26. Libonati, M., and Floridi, A. (1969) Breakdown of double-stranded RNA by bull semen ribonuclease Eur J Biochem 8, 81-87.
27. Taniguchi, T., and Libonati, M. (1974) Action of ribonuclease BS-1 on a DNA-RNA hybrid Biochem Biophys Res Commun 58, 280-286.
28. Soucek, J., Hruba, A., Paluska, E., Chudomel, V., Dostal, J., and Matousek, J. (1983) Immunosuppressive effects of bovine seminal fluid fractions with ribonuclease activity Folia Biol (Praha) 29, 250-261.
29. Matousek, J., and Grozdanovic, J. (1973) Specific effect of bull seminal ribonuclease (AS RNase) on cell systems in mice Comp Biochem Physiol A 46, 241-248.
30. Matousek, J. (1973) The effect of bovine seminal ribonuclease (AS RNase) on cells of Crocker tumour in mice Experientia 29, 858-859.
31. Youle, R. J., Wu, Y. N., Mikulski, S. M., Shogen, K., Hamilton, R. S., Newton, D., D'Alessio, G., and Gravell, M. (1994) RNase inhibition of human immunodeficiency virus infection of H9 cells Proc Natl Acad Sci U S A 91, 6012-6016.
32. Sakakibara, F., Takayanagi, G., Ise, H., and Kawauchi, H. (1977) Isolation of two agglutinins with different biological properties from the egg of Rana Catesbeiana. Yakugakuzashi 97, 855-862
33. Ardelt, W., Mikulski, S. M., and Shogen, K. (1991) Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases J Biol Chem 266, 245-251.
34. Sakakibara, F., Kawauchi, H., Takayanagi, G., and Ise, H. (1979) Egg lectin of Rana japonica and its receptor glycoprotein of Ehrlich tumor cell. Cancer Res 39, 1347-1352
35. Mosimann, S. C., Johns, K. L., Ardelt, W., Mikulski, S. M., Shogen, K., and James, M. N. (1992) Comparative molecular modeling and crystallization of P-30 protein: a novel antitumor protein of Rana pipiens oocytes and early embryos Proteins 14, 392-400.
36. Shapiro, R., Harper, J. W., Fox, E. A., Jansen, H. W., Hein, F., and Uhlmann, E. (1988) Expression of Met-(-1) angiogenin in Escherichia coli: conversion to the authentic less than Glu-1 protein Anal Biochem 175, 450-461.
37. Terzyan, S. S., Peracaula, R., de Llorens, R., Tsushima, Y., Yamada, H., Seno, M., Gomis-Ruth, F. X., and Coll, M. (1999) The three-dimensional structure of human RNase 4, unliganded and complexed with d(Up), reveals the basis for its uridine selectivity J Mol Biol 285, 205-214.
38. Titani, K., Takio, K., Kuwada, M., Nitta, K., Sakakibara, F., Kawauchi, H., Yakayanagi, G., and Hakomori, S. (1987) Amino acid sequence of a sialic acid binding lectin from frog (Rana catesbeiana). Biochemistry 26, 2198-2194
39. Kamiya, Y., Oyama, F., Oyama, R., Sakakibara, F., Nitta, K., Kawauchi, H., Takayanagi, Y., and Titani, K. (1990) Amino acid sequence of a lectin from Japanese frog (Rana japonica) eggs J Biochem (Tokyo) 108, 139-143.
40. Nitta, K., Ozaki, K., Ishikawa, M., Furusawa, S., Hosono, M., Kawauchi, H., Sasaki, K., Takayanagi, Y., Tsuiki, S., and Hakomori, S. (1994) Inhibition of cell proliferation by Rana catesbeiana and Rana japonica lectins belonging to the ribonuclease superfamily Cancer Res 54, 920-927.
41. Mosimann, S. C., Ardelt, W., and James, M. N. (1994) Refined 1.7 A X-ray crystallographic structure of P-30 protein, an amphibian ribonuclease with anti-tumor activity J Mol Biol 236, 1141-1153.
42. Boix, E., Wu, Y., Vasandani, V. M., Saxena, S. K., Ardelt, W., Ladner, J., and Youle, R. J. (1996) Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity J Mol Biol 257, 992-1007.
43. Darzynkiewicz, Z., Carter, S. P., Mikulski, S. M., Ardelt, W. J., and Shogen, K. (1988) Cytostatic and cytotoxic effects of Pannon (P-30 Protein), a novel anticancer agent Cell Tissue Kinet 21, 169-182.
44. Saxena, S. K., Gravell, M., Wu, Y. N., Mikulski, S. M., Shogen, K., Ardelt, W., and Youle, R. J. (1996) Inhibition of HIV-1 production and selective degradation of viral RNA by an amphibian ribonuclease J Biol Chem 271, 20783-20788.
45. Newton, D. L., Hansen, H. J., Mikulski, S. M., Goldenberg, D. M., and Rybak, S. M. (2001) Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma Blood 97, 528-535.
46. Liao, Y. D. (1992) A pyrimidine-guanine sequence-specific ribonuclease from Rana catesbeiana (bullfrog) oocytes Nucleic Acids Res 20, 1371-1377.
47. Liao, Y. D., and Wang, J. J. (1994) Yolk granules are the major compartment for bullfrog (Rana catesbeiana) oocyte-specific ribonuclease Eur J Biochem 222, 215-220.
48. Wang, J. J., Tang, P. C., Chao, S. H., Cheng, C. H., Ma, H. J., and Liao, Y. D. (1995) Immunocytochemical localization of ribonuclease in yolk granules of adult Rana catesbeiana oocytes Cell Tissue Res 280, 259-265.
49. Scheer, U. (1972) Nuclear pore flow rate of ribosomal RNA and chain growth of its precursor during oogenesis of Xenopus laevis. Devel. Biol. 30, 13-28
50. Tang, P. C., Huang, H. C., Wang, S. C., Jeng, J. C., and Liao, Y. D. (2002) Regulation of ribonuclease expression by estradiol in Rana catesbeiana (Bullfrog). Nucleic Acids Res 30, 3286-3293
51. Liao, Y. D. (1995) Determination of base specificity of multiple ribonucleases from crude samples Molecular Biology Reports 20, 149-154
52. Shapiro, R., Riordan, J. F., and Vallee, B. L. (1986) Characteristic ribonucleolytic activity of human angiogenin Biochemistry 25, 3527-3532.
53. Huang, H. C., Wang, S. C., Leu, Y. J., Lu, S. C., and Liao, Y. D. (1998) The Rana catesbeiana rcr gene encoding a cytotoxic ribonuclease. Tissue distribution, cloning, purification, cytotoxicity, and active residues for RNase activity J Biol Chem 273, 6395-6401.
54. Liao, Y. D., Huang, H. C., Leu, Y. J., Wei, C. W., Tang, P. C., and Wang, S. C. (2000) Purification and cloning of cytotoxic ribonucleases from Rana catesbeiana (bullfrog) Nucleic Acids Res 28, 4097-4104.
55. Rosenberg, H. F., Zhang, J., Liao, Y. D., and Dyer, K. D. (2001) Rapid diversification of RNase A superfamily ribonucleases from the bullfrog, Rana catesbeiana J Mol Evol 53, 31-38
56. Smith, R. F., Wiese, B.A., Wojzynski, M.K., Davason, D.B., and Worley, K.C. (1996) BCM Search Launcher--An Integrated Interface to Molecular Biology Data Base Search and Analysis Services Available on the Would Wide Web. Genome Res. 6, 454-462
57. Zhang, J., Rosenberg, H. F., and Nei, M. (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes Proc Natl Acad Sci U S A 95, 3708-3713.
58. Zhang, J., Dyer, K. D., and Rosenberg, H. F. (2000) Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection Proc Natl Acad Sci U S A 97, 4701-4706.
59. Zhang, J., and Rosenberg, H. F. (2002) Diversifying selection of the tumor-growth promoter angiogenin in primate evolution Mol Biol Evol 19, 438-445
60. Rosenberg, H. F., and Domachowske, J. B. (1999) Eosinophils, ribonucleases and host defense: solving the puzzle Immunol Res 20, 261-274.
61. Hooper, L. V., Stappenbeck, T. S., Hong, C. V., and Gordon, J. I. (2003) Angiogenin: a new class of microbicidal proteins involved in innate immunity. nature immunology 4, 269-273
62. Chen, S., Le, S. Y., Newton, D. L., Maizel, J. V., Jr., and Rybak, S. M. (2000) A gender-specific mRNA encoding a cytotoxic ribonuclease contains a 3' UTR of unusual length and structure Nucleic Acids Res 28, 2375-2382.
63. Sorrentino, S., and Libonati, M. (1994) Human pancreatic-type and nonpancreatic-type ribonucleases: a direct side-by-side comparison of their catalytic properties Arch Biochem Biophys 312, 340-348.
64. Jensen, D. E., and von Hippel, P. H. (1976) DNA "melting" proteins. I. Effects of bovine pancreatic ribonuclease binding on the conformation and stability of DNA J Biol Chem 251, 7198-7214.
65. Fisher, B. M., Ha, J. H., and Raines, R. T. (1998) Coulombic forces in protein-RNA interactions: binding and cleavage by ribonuclease A and variants at Lys7, Arg10, and Lys66 Biochemistry 37, 12121-12132.
66. Irie, M., Nitta, R., Ohgi, K., Niwata, Y., Watanabe, H., Iwama, M., Beintema, J. J., Sanda, A., and Takizawa, Y. (1988) Primary structure of a non-secretory ribonuclease from bovine kidney J Biochem (Tokyo) 104, 289-296.
67. Beintema, J. J., Hofsteenge, J., Iwama, M., Morita, T., Ohgi, K., Irie, M., Sugiyama, R. H., Schieven, G. L., Dekker, C. A., and Glitz, D. G. (1988) Amino acid sequence of the nonsecretory ribonuclease of human urine Biochemistry 27, 4530-4538.
68. Irie, M., Nitta, K., and Nonaka, T. (1998) Biochemistry of frog ribonucleases Cell Mol Life Sci 54, 775-784.
69. Schmid, F. X., Grafl, R., Wrba, A., and Beintema, J. J. (1986) Role of proline peptide bond isomerization in unfolding and refolding of ribonuclease Proc Natl Acad Sci U S A 83, 872-876.
70. Anfinsen, C. B. (1973) Principles that govern the folding of protein chains Science 181, 223-230
71. Moore, S., and Stein, W. H. (1973) Chemical structures of pancreatic ribonuclease and deoxyribonuclease Science 180, 458-464.
72. Merrifield, B. (1985) Solid phase synthesis. Nobel lecture, 8 December 1984 Biosci Rep 5, 353-376.
73. Raines, R. T. (1998) Ribonuclease A Chem Rev 98, 1045-1066
74. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The Protein Data Bank Nucleic Acids Res 28, 235-242
75. Pares, X., Nogues, M. V., de Llorens, R., and Cuchillo, C. M. (1991) Structure and function of ribonuclease A binding subsites Essays Biochem 26, 89-103.
76. Nogues, M. V., Vilanova, M., and Cuchillo, C. M. (1995) Bovine pancreatic ribonuclease A as a model of an enzyme with multiple substrate binding sites Biochim Biophys Acta 1253, 16-24.
77. Cuchillo, C. M., Vilanova, M., and Nogues, M. V. (1997) Pancreatic ribonucleases In: Ribonuclease: Structure and Function, D'Alessio, G. and Riordan, J.F. Ed., Academic Press, San Diego
78. delCardayre, S. B., Ribo, M., Yokel, E. M., Quirk, D. J., Rutter, W. J., and Raines, R. T. (1995) Engineering ribonuclease A: production, purification and characterization of wild-type enzyme and mutants at Gln11 Protein Eng 8, 261-273.
79. Mitsui, Y., Urata, Y., Torii, K., and Irie, M. (1978) Studies on the binding of adenylyl-3', 5'-cytidine to ribonuclease Biochim Biophys Acta 535, 299-308.
80. Brunger, A. T., Brooks, C. L., 3rd, and Karplus, M. (1985) Active site dynamics of ribonuclease Proc Natl Acad Sci U S A 82, 8458-8462.
81. de Llorens, R., Arus, C., Pares, X., and Cuchillo, C. M. (1989) Chemical and computer graphics studies on the topography of the ribonuclease A active site cleft. A model of the enzyme-pentanucleotide substrate complex Protein Eng 2, 417-429.
82. Acharya, K. R., Shapiro, R., Allen, S. C., Riordan, J. F., and Vallee, B. L. (1994) Crystal structure of human angiogenin reveals the structural basis for its functional divergence from ribonuclease Proc Natl Acad Sci U S A 91, 2915-2919.
83. Nogues, M. V., Moussaoui, M., Boix, E., Vilanova, M., Ribo, M., and Cuchillo, C. M. (1998) The contribution of noncatalytic phosphate-binding subsites to the mechanism of bovine pancreatic ribonuclease A Cell Mol Life Sci 54, 766-774.
84. Pares, X., Llorens, R., Arus, C., and Cuchillo, C. M. (1980) The reaction of bovine pancreatic ribonuclease A with 6-chloropurineriboside 5'-monophosphate. Evidence on the existence of a phosphate-binding sub-site Eur J Biochem 105, 571-579.
85. Arus, C., Paolillo, L., Llorens, R., Napolitano, R., Pares, X., and Cuchillo, C. M. (1981) 1H-NMR studies on the binding subsites of bovine pancreatic ribonuclease A Biochim Biophys Acta 660, 117-127.
86. Arus, C., Paolillo, L., Llorens, R., Napolitano, R., and Cuchillo, C. M. (1982) Evidence on the existence of a purine ligand induced conformational change in the active site of bovine pancreatic ribonuclease A studied by proton nuclear magnetic resonance spectroscopy Biochemistry 21, 4290-4297.
87. Alonso, J., Paolillo, L., D'Auria, G., Nogues, M. V., and Cuchillo, C. M. (1988) H-n.m.r. studies on the specificity of the interaction between bovine pancreatic ribonuclease A and dideoxynucleoside monophosphates Int J Pept Protein Res 31, 537-543.
88. Alonso, J., Paolillo, L., D'Auria, G., Nogues, M. V., and Cuchillo, C. M. (1989) 1H-n.m.r. studies on the existence of substrate binding sites in bovine pancreatic ribonuclease A Int J Pept Protein Res 34, 66-69.
89. Richardson, R. M., Pares, X., and Cuchillo, C. M. (1990) Chemical modification by pyridoxal 5'-phosphate and cyclohexane-1,2-dione indicates that Lys-7 and Arg-10 are involved in the p2 phosphate-binding subsite of bovine pancreatic ribonuclease A Biochem J 267, 593-599.
90. Moussaoui, M., Guasch, A., Boix, E., Cuchillo, C., and Nogues, M. (1996) The role of non-catalytic binding subsites in the endonuclease activity of bovine pancreatic ribonuclease A J Biol Chem 271, 4687-4692.
91. Fedorov, A. A., Joseph-McCarthy, D., Fedorov, E., Sirakova, D., Graf, I., and Almo, S. C. (1996) Ionic interactions in crystalline bovine pancreatic ribonuclease A Biochemistry 35, 15962-15979.
92. Fisher, B. M., Schultz, L. W., and Raines, R. T. (1998) Coulombic effects of remote subsites on the active site of ribonuclease A Biochemistry 37, 17386-17401.
93. Mosimann, S. C., Newton, D. L., Youle, R. J., and James, M. N. (1996) X-ray crystallographic structure of recombinant eosinophil-derived neurotoxin at 1.83 A resolution J Mol Biol 260, 540-552.
94. Slifman, N. R., Loegering, D. A., McKean, D. J., and Gleich, G. J. (1986) Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein J Immunol 137, 2913-2917.
95. Sorrentino, S., and Glitz, D. G. (1991) Ribonuclease activity and substrate preference of human eosinophil cationic protein (ECP) FEBS Lett 288, 23-26.
96. Rosenberg, H. F., Dyer, K. D., Tiffany, H. L., and Gonzalez, M. (1995) Rapid evolution of a unique family of primate ribonuclease genes Nat Genet 10, 219-223.
97. Beintema, J. J. (1989) Presence of a basic amino acid residue at either position 66 or 122 is a condition for enzymic activity in the ribonuclease superfamily FEBS Lett 254, 1-4.
98. Okabe, Y., Katayama, N., Iwama, M., Watanabe, H., Ohgi, K., Irie, M., Nitta, K., Kawauchi, H., Takayanagi, Y., Oyama, F., and et al. (1991) Comparative base specificity, stability, and lectin activity of two lectins from eggs of Rana catesbeiana and R. japonica and liver ribonuclease from R. catesbeiana J Biochem (Tokyo) 109, 786-790.
99. Nitta, K., Oyama, F., Oyama, R., Sekiguchi, K., Kawauchi, H., Takayanagi, Y., Hakomori, S., and Titani, K. (1993) Ribonuclease activity of sialic acid-binding lectin from Rana catesbeiana eggs Glycobiology 3, 37-45.
100. Sharp, P. M., and Li, W. H. (1987) The codon adaptation index-a mesaure of directional synonymous codon usuage bias, and its potential applications. Nucl. Acid Res. 15, 1281-1295
101. Wang, J. H. (1968) Facilitated proton transfer in enzyme catalysis. It may have a crucial role in determining the efficiency and specificity of enzymes Science 161, 328-334
102. Hale, R. S., and Thompson, G. (1998) Codon optimization of the gene encoding a domain from human type I neurofibromin protein results in a three fold improvement in expression level in Escherichia coli. Prot. Express. Purif. 12, 185-188
103. Pugsley, A. P. (1993) The complete general secretary pathway in gram-negative bacterial. Microbiological reviews 57, 50-108
104. Rietsch, A., Belin, D., Martin, N., and Beackwith, J. (1996) An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 93, 13048-13053
105. Letain, T. E., and Postle, K. (1997) TonB protein appears to transduce energy by shuttling between the cytoplasmic membrane and the outer membrane in Escherichia coli. Molecular Microbiology 24, 271-283
106. Talmadge, k., Brosius, J., and Gilbert, W. (1981) An "internal" signal sequence directs secretion and processing of proinsulin in bacteria. Nature 294, 176-178
107. Gray, G. L., Baldridge, J. S., McKeown, K. S., Heyneker, H. L., and Chang, C. N. (1985) Periplasmic production of correctly processed human growth hormone in Escherichia coli: natural and bacterial signal sequences are interchangeavle. Gene 39, 247-254
108. Schein, C. H., Boix, E., Haugg, M., Holliger, K. P., Hemmi, S., Frank, G., and Schwalbe, H. (1992) Secretion of mammalian ribonucleases from Escherichia coli using the signal sequence of murine spleen ribonuclease Biochem J 283, 137-144.
109. Seshadri, K., Balaji, P. V., Rao, V. S., and Vishveshwara, S. (1993) Computer modelling studies of ribonuclease A-pyrimidine nucleotide complexes J Biomol Struct Dyn 11, 395-415.
110. Guex, N., and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An enviroment for comparative protein modeling. Electrophoresis 18, 2714-2723