研究生: |
蘇建中 |
---|---|
論文名稱: |
半導體工業區空氣污染物之懸浮微粒的調查分析 |
指導教授: | 王竹方 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
中文關鍵詞: | 半導體工業區 、空氣污染 、懸浮微粒 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討新竹科學工業園區懸浮微粒之特性及其污染來源,研究方法包括懸浮微粒採樣與空氣品質模式分析,實驗於88年11月下旬進行,於科學園區周界設立同步輻射研究中心、實驗中學與龍山國小等三個測站,進行連續11天密集採樣,量測項目為TSP、PM2.5和PM2.5~10的質量濃度、水溶性陰陽離子濃度及元素組成;並使用工業污染源擴散模式模擬新竹科學園區懸浮微粒可能分布情形,利用加強因子分析法、因子分析法及化學質量平衡受體模式推估懸浮微粒的污染來源及貢獻量。
ISCST3擴散模式分析結果顯示新竹科學園區懸浮微粒濃度最高之地點集中在力行路大門口之出入檢查哨;未來或可考慮在該地點設置空氣品質監測站以監測園區之空氣品質變化。研究結果顯示,在TSP方面,元素組成以SO42-、NO3-、Cl-、NH4+為主、其次依序為Al、Fe與Ca等地殼元素;PM2.5與PM2.5~10中,地殼元素Fe、K、Ca、Al與Mg濃度亦相當高;而園區懸浮微粒中SO42-、NO3-、Cl-、、As、Se等元素有明顯濃度偏高的現象,推測應由半導體製程所排放酸鹼氣體與毒性物質而來。
加強因子分析(EF)發現,TSP可能遭受污染來源為海洋飛沫或其他人為工業影響。因子分析(FA)解析TSP污染來源為土壤、街塵、營建工程、交通與海洋飛沫;PM2.5~10主要來源為土壤、街塵、與營建工程等;PM2.5主要來自交通污染與硫酸鹽為主。化學質量平衡受體模式(CMB)解析TSP主要來源為土壤(18~45%)、街塵(1~17%)、硝酸鹽(6~9%)、海洋飛沫(4~7%)與柴油車輛(2~8%)。在受體模式解析過程中發現化學質量平衡受體模式結果仍有37~52%未解析量,且由因子分析中,尚有些物種無法判別其污染來源,推斷應與半導體工業污染源有其特定指標元素所導致。
The purpose of this investigation is to understand the characteristics and the sources of TSP, PM2.5~10 and PM2.5 in Hsinchu Science Based Industrial Park, which is a typical high-tech related industrial area. An intensive sampling program has been conducted in this work. Airborne particulate samples were collected at different air quality monitoring stations from September 15 to 25 in 1999. The collected filter samples were then analyzed to determine the chemical compositions of various particulates. The results showed that the most abundant species in TSP were SO42-, NO3-, Cl-, NH4+, Al, Fe, and Ca, and the most abundant species in PM2.5 and PM2.5~10 were Fe, K, Ca, Al and Mg respectively. It was observed that the concentrations of SO42-,NO3-,Cl-,As and Se in the park are much higher than that of other area, which may be mostly contributed from the semi-conductor manufacture process. Various mathematical models has been utilized to identify the sources and extent of pollution in the area. The ISCST3 (Industrial Source Complex Short Term) dispersion model was employed to simulate the TSP and PM10 concentration in the air and compared with the measured values. Enrichment factor analysis indicated that the TSP in the area were mainly from marine and other industry sources. The VARIMAX-rotated principal component analysis identified the TSP sources included soil, road dust, construction activity, traffic and sea-salt spray respectively. On the other hand, the PM2.5~10 sources were soil, road-dust and construction activity, and the PM2.5 sources were traffic and sulfate. The results of Chemical Mass Balance (CMB) receptor model showed that source contributions to TSP at three different stations were soil (18~45%), road-dust (1~17%), nitrate (6~9%), marine spray (4~7%) and diesel (2~8%). It was found that, 37~52% unknown contribution can still be obtained from a CMB receptor model or a factor analysis. Obviously, the establishment of an comprehensive source profile for high-tech related industry is necessitated to apportion the contributions of different sources.
1. 李芝珊,氣膠與健康,環保科技通訊,1992,4(5),4。
2. J. R. Brook, T. F. Dann, R. T. Burnett, "The Relationship Among TSP, PM10, PM2.5, and Inorganic Constituent of Atmospheric Particulate Matter At Multiple Canadian Locations," Air & Waste Manage. Assoc. 1997 47 2-19.
3. E. Yakovleva, P. K. Hopke, "Receptor Modeling Assessment of Particle Total Exposure Assessment Methodology Data," Environ. Sci. Technol. 1999, 33, 3645-3652.
4. F. Wei, E. Teng, G. Wu, W. Hu, W. E. Wilson, R. S. Chapman, J. C. Pau, J. Zhang, "Ambient Concentration and Elemental Compositions of PM10 and PM2.5 in Four Chinese Cities," Environ. Sci. Technol. 1999, 33, 4188-4193.
5. 王怡方,「台灣林園、三重與麥寮三地區大氣懸浮微粒特性及來源探討」,國立台灣大學公共衛生研究所碩士論文(1996)。
6. 楊忠盛,「台北都會區懸浮微粒特性及來源之探討」,國立台灣大學環境工程學研究所碩士論文(1998)。
7. 蔡素芬,「台灣地區道路塵粒特性之研究」,國立清華大學原子科學研究所碩士論文(1999)。
8. 楊宏隆,「大氣懸浮微粒PM2.5及PM10之特性及來源分析」,國立中興大學環境工程學研究所碩士論文(1998)。
9. 陳紀綸,「台中港地區大氣懸浮微粒污染來源分析」,國立中興大學環境工程學研究所碩士論文(1999)。
10. 楊定國,「台中地區都會區、近郊區、郊區日夜間懸浮微粒、金屬離子及酸性陰離子之研究」,私立東海大學環境科學研究所碩士論文(1999)。
11. J. P. Pinto, R. K. Stevens, R. D. Willis, R. Kellogg, Y. Mamane, J. Novak, J. Santroch, I. Benes, J. Lenicek, V. Bures, "Czech Air Quality Monitoring and Receptor Modeling Study," Environ. Sci. Technol. 1998, 32, 843-854.
12. 謝嘉文,「空氣污染受體模式與擴散模式之驗證與應用」,國立清華大學原子科學研究所碩士論文(1999)。
13. J. I. Levy, J. K. Hammitt, Y. Yanagisawa, J. D. Spengler, "Development of a New Damage Function Model for Power Plants: Methodology and Applications," Environ. Sci. Technol. 1999, 33, 4364-4372.
14. C. F. Wang, T. T. Miau, J. Y. Perng, P. C. Chiang, H. T. Tsait, M. H. Yang, Analyst, 1989, 114, 1067-1070.
15. C. F. Wang, W. H. Cheng, M. H. Yang, P. C. Chiang, Analyst, 1995, 120, 1681-1686.
16. C. F. Wang, J. Y. Yang, C. H. Ke, Analytica Chemica Acta, 1996, 320, 207-216.
17. C. F. Wang, S. L. Jeng, C. C. Lin, P. C. Chiang, Analytica Chemica Acta, 1998, 68, 11-19.
18. C. F. Wang, E. E. Chang, P. C. Chiang, N. K. Aras, Analyst, 1995, 120, 2521-2527.
19. C. F. Wang, C. J. Chin, S. K. Luo, L. C. Men, Analytica Chemica Acta, 1999, accepted.
20. 蔣本基等,台灣地區懸浮微粒空氣污染問題及防治之研究,EPA-86-FA-42-09-19。
21. 王竹方等,台灣地區懸浮微粒污染排放源調查分析及防治策略研擬,EPA-86-FA-42-09-19。
22. Glen E. Gorden, American Chemical Society, 1980, 14, 793.
23. K. T. Whitby, R. B. Husar and B. Y. H. Liu, J. Colloid Interfernce Sci., 1972, 39, 177.
24. P. K. Hopke, Receptor Modeling for air quality management, Elsevier Science Publishers B. V., 1991.
25. P. K. Hopke, Receptor Modeling in Environmental Chemistry, John Wiley & Sons, Inc, 1985.
26. User's Guide for the Industrial Spurce Complex (ISC3) Dispersion Models, Vol Ⅰ-User Instructions, U.S. Environmental Protection Agency of Air Quality Planning and Standards Emissions, 1995.
27. User's Guide for the Industrial Spurce Complex (ISC3) Dispersion Models, Vol Ⅱ-Description of Model Algorithms, U.S. Environmental Protection Agency of Air Quality Planning and Standards Emissions, 1995.
28. U.S. Environmental Protection Agency, Receptor Model Technical Series, Volume Ⅰ. Overview of Receptor Application to Particulate Source Apportionment EPA-450/4-81-016a. 1981.
29. U.S. Environmental Protection Agency, Receptor Model Technical Series, Volume Ⅱ. Overview of Receptor Application to Particulate Source Apportionment EPA-450/4-81-016b. 1981.
30. U.S. Environmental Protection Agency, Receptor Model Technical Series, Volume Ⅲ. CMB7 User's Manual, EPA-450/4-90-004. 1989.
31. J. C. Chow, "Measurement Methods to Determine Compliance with Ambient Air Quality Standard for Suspended Particles", J. Air & Waste Manage. Assoc. 1997,45, 320-382.
32. Miller, M. S., S. K. Friedlander, G. M. Hidy, "A chemical element balance for the pasadena aerosol", J. Colloid Interface Sci., 1972, 39, 165-176.
33. Fredlander, S. K., "Chemical Element Balance and Identification of Air Pollution Sources", Environ. Sci. Technol., 1973, 7, 235-240.