研究生: |
洪端佑 HUNG, TUAN-YU |
---|---|
論文名稱: |
電力模組功率循環測試之結構可靠度分析與評估 Analysis and Assessment of the Reliability Life of Power Module Structure under Power Cycling Test |
指導教授: | 江國寧 |
口試委員: |
江國寧
蔡宏營 劉德騏 趙儒民 李昌駿 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 76 |
中文關鍵詞: | 電力模組 、功率循環測試 、導線脫離 、有限單元分析 、壽命預估模型 、高週疲勞 、低週疲勞 、潛變 、焊錫 、熱循環測試 、裂紋成長 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
逐漸短缺的資源與全球性對電力能源需求增加,促使人們必須更有效與環保的使用能源。電力模組是功率管理系統中的關鍵結構並廣泛應用於功率供應器、自動化控制、交通運輸、馬達控制、大樓電源控制以及再生能源。
在功率循環測試中,鋁導線與晶片間熱膨脹係數的不匹配可導致導線因疲勞破壞而脫離。本研究著眼於發展鋁導線可靠度評估方法。根據實際測試樣品建立三維有限單元模型,執行電熱耦合與熱固有限單元分析並分析鋁導線在循環功率下的力學行為。增加鋁線數目可改善電流聚集現象,減少鋁線周圍電流聚集現象所產生的焦耳熱可降低接面溫度。此結果暗示藉由打線設計,電力模組將被操作在更高功率上,同時提供相同等級的可靠度。模擬所得的預估溫度符合實驗結果。當模組承受低電流負載時無法觀察到等效塑性應變,然而,等效塑性應變與彈性應變/等效塑性應變總和的比例將隨著電流負載提升而上升。若模組承受高電流負載則必須考慮降伏效應,塑性應變甚至統御破壞機制。高週疲勞與低週疲勞理論應分別被包含在低電流負載與高電流負載的壽命預估模型。模擬結果與實驗進行驗證後,兩模型即可被提出並應用於電力模組設計。
由於具高對應溫度,潛變為焊錫主要的失效模式之一,尤其對於高電力模組。為了了解溫度曲線與電力模組可靠度的關係,將模組進行-40 °C/ 125 °C加速熱循環測試與分析、週期分別為66分鐘與30分鐘,在數個循環次數下量測焊錫裂紋長度。此外,為了確定初始裂紋壽命,將各循環次數下的平均裂紋長度進行外插。結果指出焊錫高度差異性明顯影響裂紋成長情形。有鑑於此,本研究聚焦焊錫高度介於150 ~ 300 μm範圍內以及焊錫高度超過300 μm,藉此將焊錫高度差異性的影響控制在最低的情況。結果指出焊錫高度介於150 ~ 300 μm範圍內其初始裂紋壽命與裂紋成長速率分別為73 cycles與 0.0068 mm/cycle的裂紋成長率(30分鐘循環週期),焊錫高度超過300 μm則無裂紋產生。降低升降溫速率將導致更明顯的應力釋放現象,造成更多的不可回復潛變;較長的持溫時間將促進潛變行為。根據上述物理現象,置於較長循環週期的電力模組將得到較差的疲勞壽命。
1. IEC International Standard, IEC 60747-34: Semiconductor devices-Mechanical and climatic test methods-power cycling, 2005.
2. G. Lefranc, T. Licht, and G. Mitic, “Properties of solders and their fatigue in power modules,” Microelectronics Reliability, vol. 42, Issue 9-11, pp. 1641-1646, 2002.
3. M. Held, P. Jacob, G. Nicoletti, P. Scacco, and M. H. Poech, “Fast power cycling test for IGBT modules in traction application,” Proceedings of the 1997 2nd International Conference on Power Electronics and Drive Systems, PEDS. Part 2, pp. 425-430, Singapore, May 1997.
4. J. H. Lau, and Y. H. Pao, Solder joints reliability of BGA, CSP, Flip-Chip, and Fine Pitch SMT assemblies, McGraw-Hill, New York, 1997.
5. J. Cadek, Creep in metallic materials, Elsevier, Amsterdam, 1988.
6. M. Ciappa, "Selected failure mechanisms of modern power modules," Microelectronics Reliability, vol. 42, Issue 4-5, pp. 653-667, 2002.
7. H. Ye, M. Lin, and C. Basaran, “Failure modes and FEM analysis of power electronic packaging,” Finite Elements in Analysis and Design, vol. 38, Issue 7, pp. 601-612, 2002.
8. J. Onuki, M. Koizumi, and J. Echigoya, “Microstructural analysis of the bonding interface between thick Al wire and Al-1 mass%Si electrode film,” Materials Transactions, JIM, vol. 37, Issue 6, pp. 1324-1331, 1996.
9. J. Onuki, M. Koizumi, and M. Suwa, “Reliability of thick Al wire bonds in IGBT modules for traction motor drives,” IEEE Transactions on Advanced Packaging, vol. 23, Issue 1, pp. 108-112, 2000.
10. M. Ishiko, M. Usui, T. Ohuchi, and M. Shirai, “Design concept for wire-bonding reliability improvement by optimizing position in power devices,” Microelectronics Journal, vol. 37, Issue 3, pp. 262-268, 2006.
11. M. Pecht, A. Dasgupta, and P. Lall, “A failure prediction model for wire bonds,” Proceedings of the 1989 International Symposium on Microelectronics, pp. 607-613, Baltimore, MD, USA , Oct., 1989.
12. J. M. Hu, M. Pecht, and A. Dasguta, “A probabilistic approach for predicting thermal fatigue life of wire bonding in microelectronics,” Transactions of the ASME. Journal of Electronic Packaging, vol. 113, Issue 3, pp. 275-285, 1991.
13. K. N. Meyyappan, P. Hansen, and P. McCluskey, “Wire flexure fatigue model for asymmetric bond height,” ASME 2003 International Electronic Packaging Technical Conference and Exhibition, InterPACK2003, pp. 769-776, Maui, HI, USA, Jul. 2003.
14. L. F. Coffin, “A study of the effects of cyclic thermal stress on a ductile metal,” Transactions ASME, vol. 76, pp. 931-950, Nov. 1954.
15. S. S. Manson, Thermal stress and low cycle fatigue, McGraw-Hill, New York, pp. 125-192, 1966.
16. J. Bielen, J. J. Gommans, and F. Theunis, “Prediction of high cycle fatigue in aluminum bond wires: a physics of failure approach combining experiments and multi-physics simulations,” Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems. Proceedings of EuroSimE 2006, 7 pp., Como, Italy, Apr. 2006.
17. W. S. Loh, M. Corfield, H. Lu, S. Hogg, T. Tilford, and C. M. Johnson, “Wire bond reliability for power electronic modules effect of bonding temperature,” 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007, pp. 640-645, London, UK, 2007.
18. H. Lu, W. S. Loh, C. Bailey, and C. M. Johnson, “Computer modeling analysis of the globtop's effects on aluminium wirebond reliability,” 2008 2nd Electronics Systemintegration Technology Conference, ESTC, pp. 1369-1373, Greenwich, UK, 2008.
19. T. Anzawa, Q. Yu, M. Yamagiwa, T. Shibutani, and M. Shiratori, “Reliability evaluation on deterioration of power device using coupled electrical-thermal-mechanical analysis,” Journal of Electronic Packaging, vol. 132, Issue 3, pp. 031012 (6 pp.), 2010.
20. S. Ramminger, G. Mitic, P. Turkes, and G. Wachutka, “Thermo-mechanical simulation of wire bonding joints in power modules,” Proceedings of International Conference on Modelling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, pp. 483-486, San Juan, Puerto Rico, 1999.
21. P. Rajaguru, H. Lu, and C. Bailey, “Application of Kriging and radial basis function in power electronic module wire bond structure reliability under various amplitude loading,” International Journal of Fatigue, vol. 45, pp. 61-70, 2012.
22. J. M. Thebaud, E. Woirgard, C. Zardini, S. Azzopardi, O. Briat, and J. M. Vinassa, “Strategy for designing accelerated aging tests to evaluate IGBT power modules lifetime in real operation mode,” IEEE Transactions on Components and Packaging Technologies, vol. 26, Issue 2, pp. 429-438, 2003.
23. C. Y. Yin, H. Lu, M. Musallam, C. Bailey, and C. M. Johnson, “A physics-of-failure based prognostic method for power modules,” 2008 10th Electronics Packaging Technology Conference (EPTC 2008), pp. 1190-1195, Singapore, 2008.
24. K. Shinohara, and Q. Yu, “Fatigue evaluation of power devices,” 2009 International Conference on Electronic Packaging Technology and High Density Packaging, ICEPT-HDP 2009, pp. 1277-1283, Beijing, China, 2009.
25. Q. Yu, T. Shibutani, A. Tanaka, T. Koyama, and M. Shiratori, “Low-cycle fatigue reliability evaluation for lead-free solders in vehicle electronics devices,” ASME InterPACK Conference 2007. IPACK2007, pp. 531-537, Vancouver, Canada, 2007.
26. R. Darveaus and K. Banerji, “Fatigue analysis of flip chip assemblies using thermal stress simulations and a coffin–mason relation,” 1991 Proceedings. 41st Electronic Components and Technology Conference, pp. 797-805, Atlanta, GA, USA, 1991.
27. X. W. Zhang and S. W. R. Lee, “Effects of temperature profile on the life prediction of PBGFA solder joints under thermal cycling,” Fracture and Strength of Solids Part 2: Behavior of Materials and Structure. Third International Conference, pp. 1133-1138, Hong Kong, Dec. 1997.
28. Y. Qi, H. R. Ghorbani, and J. K. Spelt, “Thermal Fatigue of SnPb and SAC Resistor Joints: Analysis of Stress-Strain as a Function of Cycle Parameters,” IEEE Transactions on Advanced Packaging, vol. 29, Issue 4, pp. 690-700, 2006.
29. Y. Qi, R. Lam, R. H. Ghorbani, P. Snugovsky, and J. K. Spelt, “Temperature profile effects in accelerated thermal cycling of SnPb and Pb-free solder joints,” Microelectronics Reliability, vol. 46, pp. 574-588, 2006.
30. J. Bressers, Creep and fatigue in high temperature alloys, Applied science, London, 1981.
31. F. Garofalo, Fundamentals of creep and creep-rupture in metals, Macmillan Publishing, 1965.
32. R. D. Cook, D. S. Malkus and M. E. Plesha, Concepts and applications of finite element analysis, 3rd edition, Wiley, New York, pp. 504-505, 1989.
33. J. D. Morrow, in Internal friction, damping and cyclic plasticity, ASTM STP No. 378, ASTM Philadelphia, 1965.
34. J. Morrow, J. F. Martin, and N. E. Dowling, "Local Stress-Stain Approach to Cumulative Fatigue Damage Analysis," Final Report, T & A. M. Report No. 379, Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, 1974.
35. J. A. Collins, Failure of Materials in Mechanical Design, J. Wiley, New York, 1993.
36. M. C. Yew, C. Y. Chou, C. S. Huang, W. K. Yang, and K. N. Chiang, “The solder on rubber (SOR) interconnection design and its reliability assessment based on shear strength test and finite element analysis,” Microelectronics Reliability, vol. 46, Issue 9-11, pp. 1874-1879, 2006.
37. C. T. Peng, H. C. Cheng, and K. N. Chiang, “Reliability analysis and design for the fine-pitch flip chip BGA packaging,” IEEE Transactions on Components and Packaging Technologies, vol. 27, Issue 4, pp. 684-693, 2004.
38. K. N. Chiang, C. N. Liu, and C. T Peng, “Parametric reliability analysis of no-underfill flip chip package,” IEEE Transactions on Components and Packaging Technologies, vol.24, Issue 4, pp.635-640, 2001.
39. V. Gektin, A. Bar-Cohen, and J. Ames, “Coffin-Manson fatigue model of underfilled flip-chips,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, vol. 20, Issue 3, pp. 317-326, 1997.
40. H. D. Solomon, “Fatigue of 60/40 solder,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, vol. CHMT-9, pp. 91-104. 1986.
41. A. Palmgren, “Durability of ball bearings,” Zeitschrift des Vereins Deutscher Ingenieure (ZVDI), vol. 68, pp. 339-341, 1924.
42. M. A. Miner, “Cumulative damage in fatigue,” Transactions ASME, vol. 67, pp. 159-164, 1945.
43. Infineon, "IGBT-modules FP35R12KT4," 2007.
44. S. Y. Chiang, T. Y. Hung, Ray Hsing and K. N. Chiang, "Temperature dependent current crowding analysis of insulated gate bipolar transistor," ICEP2010 International Conference on Electronics Packaging, 6 pp., Hokkaido, Japan, May 2010.
45. C. C. Lee, C. C. Lee and K. N. Chiang, “Electromigration characteristic of SnAg3.0Cu0.5 flip chip interconnection,” IEEE Transactions on Advanced Packaging, vol. 33, Issue 1, pp. 189-195, 2010.
46. J. Evans, J. Y. Evans, “Packaging factors affecting the fatigue life of power transistor die bonds,” IEEE transactions on components, packaging, and manufacturing technology. Part A, vol. 21, Issue 3, pp. 459-468, 1998.
47. Y. H. Pao, E. Jih, V. Siddapureddy, X. Song, R. Liu, R. McMillan, J. M. Hu, “A thermal fatigue model for surface mount leadless chip resistor (LCR) solder joints,” in: Sensing, Modeling and Simulation in Emerging Electronic Packaging. 1996 ASME International Mechanical Engineering Congress and Exposition, pp. 1-12, Atlanta, GA, USA, 1996.
48. T. Y. Hung, C. J. Huang, C. C. Lee, C. C. Wang, K. C. Lu, and K. N. Chiang, " Investigation of solder crack behavior and fatigue life of the power module on different thermal cycling period," Microelectronic Engineering, vol. 107, pp.125-129, 2013.