簡易檢索 / 詳目顯示

研究生: 黃靖欹
Huang, Ching I
論文名稱: 次結構指標與次結構保真度
Substructurability index and substructuring fidelity
指導教授: 杜佳穎
Tu, Jia Ying
口試委員: 高崇堯
Kao, Chung Yao
徐勝均
Xu, Sheng Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 61
中文關鍵詞: 動態次結構系統次結構性擬真度范數
外文關鍵詞: dynamically substructured system, Substructurability, fidelity, norm
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文創新提出動態次結構系統之可次結構性分析理論,以預判工程系統測試之準確度、效能與強健性。動態次結構系統為混和測試的一種,其策略是將受測工程系統拆解為物理和數值次結構兩種子系統,一部分以全比例物理原型測試,一部分以數值模型模擬,因此結合了典型全比例測試法之可靠度,與數值解析法之高效率等優點。物理次結構內安裝致動器和感測器,組成傳動系統,以同步物理原型與數值模型之邊界條件。為消除傳動系統之不理想動態,同步控制器設計是確保測試成功之要素,以避免數值與物理次結構之輸出訊號傳遞失真,導致測試失敗。
    近年已有許多文獻提出動態次結構測試存在「動態性」限制,若物理或數值次結構之原生動態不理想,例如低阻尼、極點靠近虛軸等等,容易引起測試不穩定、或者同步控制成效不佳,導致測試結果失真、不可靠、不易重複等等。因此本論文旨在建構一套動態與強健性分析理論,以預判分析工程系統之可次結構性、避免低效能之動態測試或同步控制。
    本論文於利用范數分析動態次結構系統之強健性,並提出可次結構性理論相關的指標,以預判並量化測試的效能,文中提及兩個指標:同步性指標和保真度指標,分別量化動態次結構測試中的同步困難度和整體測試的準確性指,標值落於可接受範圍之外,則可次結構性低、測試或模擬可能不易進行、低效能或容易失真;相反地,良好的指標代表可次結構性高、測試可行、效率佳。本論文提出之可次結構性理論相關指標,將有助於產學界了解動態次結構測試之「動態性」問題、並尋求正確與合理的解決方案。


    Dynamically substructured system (DSS) is one of the hybrid testing techniques, which decompose an entire system into numerical and physical substructures. Substructurability theory is proposed to analyze the feasibility and fidelity of testing methods, and substructurability quantifies the implementation efficiency of DSS tests. Successful tests require a robust controller to compensate for unwanted dynamics which produce by actuator systems to achieve synchronized responses of the numerical and physical outputs in real time and, most importantly, to predicts correct dynamic.
    However, it is noted that the dynamic properties of the substructures sometimes influence the synchronization stability and fidelity. For example, low damping coefficient might cause system unstable or testing inefficiency. Therefore, based on norm theory, the synchronization index and fidelity index are proposed, in order to evaluate the efficiency and robustness of DSS test in advance.
    We offer some embryo simulation in support of the indices. Accordingly, we could judge the behaviors of a system by substructureability index. When the index is unsatisfactory, this means the corresponding real-time dynamic test is not robust and inefficient. By contrast, when the index is ideal, the dynamic test is relatively stable and accuracy. The substructurability theory is contributive to interpret the dynamic limits of DSS and is helpful to search for reasonable solutions.

    致謝 i 摘要 ii Abstract iii Table of Contents iv Figure List vi Table List viii Notation ix Chapter 1 Introduction and Motivation 1 1.1 Dynamic testing method 2 1.2 Dynamically substurctured system 3 1.3 Motivation 5 1.4 Goal 6 1.5 Structure of the paper 7 Chapter 2 DSS testing and norm theory 8 2.1 Framework of a DSS testing 9 2.2 Norm theory 11 2.3 Noise and error 15 Chapter 3 Deviation of synchronization index and fidelity index 18 3.1 Application of feedback block diagram to a DSS 19 3.2 An example for a DSS testing 22 Chapter 4 Experiment setup 25 4.1 Numerical substructure 27 4.2 Physical substructure 29 4.3 System identification 33 Chapter 5 Simulation results and experiment results 38 5.1 Simulation 39 5.2 Experiment 50 Chapter 6 Conclusion 56 Reference 59

    1. A.P. Darby, M.S. Williams, and A. Blakeborough, “Stability and delay compensation for real-time substructure testing,” Journal of Engineering Mechanics, 2002. 128(12): pp. 1276-1284.
    2. X. Ji, K. Kajiwara, T. Nagae, R. Enokida, and M. Nakashima, “A substructure shaking table test for reproduction of earthquake responses of high-rise buildings,” Earthquake Engineering and Structural Dynamics, 2009. 38(12): pp. 1381-1399.
    3. S. Öncü, S. Karaman, L. Güvenç, S. Ersolmaz, E. Öztürk, E. Çetin, M. Sinal, “Robust yaw stability controller design for a light commercial vehicle using a hardware in the loop steering test rig,” Intelligent Vehicles Symposium, 2007, pp. 852-859.
    4. T. Horiuchi, M. Inoue, T. Konno and Y. Namita, “Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber,” Earthquake Engineering and Structural Dynamics, 1999. 28(10): pp. 1121-1141.
    5. M. Nakashima, H. Kato and E. Takaoka, “Development of real-time pseudo dynamic testing,” Earthquake Engineering and Structural Dynamics. 21: pp. 79–92,1992.
    6. M.I. Wallace, J. Sieber, S.A. Neild, D.J. Wagg and B. Krauskopf, “Stability analysis of real-time dynamic substructuring using delay differential equation models,” Earthquake Engineering and Structural Dynamics, 2005. 34(15): pp. 1817-1832.
    7. M.I. Wallace, D.J. Wagg and S.A. Neild, “An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring,” Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 2005. 461(2064): pp. 3807-3826.
    8. S.A. Neild, D.P. Stoten, D. Drury and D.J. Wagg, “Control issues relating to real-time substructuring experiments using a shaking table,” Earthquake Engineering and Structural Dynamics, 2005. 34(9): pp. 1171-1192.
    9. J. Liu, S.J. Dyke, H.-J. Liu, X.-Y. Gao, and B. Phillips, “A novel integrated compensation method for actuator dynamics in real-time hybrid structural testing,” Structural Control and Health Monitoring, 2013. 20(7): pp. 1057-1080.
    10. C. Chen, J.M. Ricles, T.M. Marullo, and O. Mercan, “Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm,” Earthquake Engineering and Structural Dynamics, 2009. 38(1): pp. 23-44.
    11. O.S. Bursi, C. Jia, L. Vulcan, S.A. Neild and D.J. Wagg, “Rosenbrock-based algorithms and subcycling strategies for real-time nonlinear substructure testing,” Earthquake Engineering and Structural Dynamics, 2011. 40(1): p. 1-19.
    12. O.S. Bursi, A. Gonzalez-Buelga, L. Vulcan, S.A. Neild and D.J. Wagg, “Novel coupling Rosenbrock-based algorithms for real-time dynamic substructure testing,” Earthquake Engineering and Structural Dynamics, 2008. 37(3): pp. 339-360.
    13. C.P. Lamarche, R. Tremblay, P. Léger, M. Leclerc and O.S. Bursi, “Comparison between real-time dynamic substructuring and shake table testing techniques for nonlinear seismic applications,” Earthquake Engineering and Structural Dynamics, 2010. 39(12): pp. 1299-1320.
    14. J.Y. Tu and J.Y. Jiang, “A numerical-substructure-based approach for the synthesis of substructurability and exact synchronisation controlllers,” World Conference on Earthquake Engineering, 2012. pp. 1085-1992.
    15. J.Y. Tu and J.Y. Jiang, “Substructurability and exact synchronisation analysis,” Structural Control and Health Monitoring, 2013. 20(12): pp. 1410-1423.
    16. G. Dullerud and F. Paganini, A Course in Robust Control Theory: A Convex Approach, Springer-Verlag, New York, Chaps.3-6, 1999.
    17. J.C. Doyle, B.A. Francis and A.R. Tannenbaum, Feedback Control Theory, New York Macmillan, 1992. Chaps. 2.
    18. C.T. Chen, Linear system theory and design, Holt Rhinehart, and Winston, New York, New York, 1996. pp. 126-134, 1984.
    19. J.Y. Jiang, The Development of Real-Time Finite Element Dynamically Substructured System, MS Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2013.
    20. H.T. Yang, Development of synchronisation controllers for substructuring tests of base-isolated structure systems, MS Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2012.
    21. C.C. Cheng, Development and Verification of State-Based Substructurability Theory for Dynamically Substructured System, MS Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2013.
    22. C.L. Wang, Mixed H2/H∞ Feedback Control of Multivariable Dynamically Substructured Systems, MS Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE