簡易檢索 / 詳目顯示

研究生: 曾文弘
論文名稱: 冷卻水塔效能評估模型之發展
Development of an Evaluated Model for the Effectiveness of Cooling Tower
指導教授: 鄭西顯
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 42
中文關鍵詞: 冷卻水塔效能評估局部模型網路
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 冷卻水塔普遍應用在發電廠、化學工廠、鋼鐵廠及大型冷凍空調系統。上述場所產生或消耗的電量都極為龐大,其操作系統之熱效率可經由冷卻水塔效能改善及操作調節而得到提升。本研究構想評估既有冷卻水塔的效能,及提出改善診斷,以期在節能減碳上能有所貢獻。
    本研究對於冷卻水塔的特性值做了初步的探討,並與美國冷卻水塔協會(Cooling Tower Institute, CTI)建立之冷卻水塔使用標準規範,所明定的冷卻水塔效能評估方法做比較。因為CTI對於實驗條件訂定得比較嚴謹,一般工廠中的冷卻水塔無法去獲得符合實驗條件的數據。CTI有提到,若實驗數據沒有符合訂定的實驗條件,雖然也可以對效能作評估,但是計算結果會有誤差。以本研究方法來取代CTI的方法,即可減少CTI效能評估的誤差,建立較完整的特性曲線,其效率計算結果也較為客觀。
    本研究方法改良自CTI的效能評估方法,以局部模型網路(Local Model Networks, LMN)來建立冷卻水塔模型,如此可以針對不同的冷卻水塔做研究,也不會影響該冷卻水塔的正常操作,提升了本研究方法的方便性與準確性。但需注意若工廠操作的數據超出建模數據的範圍,則模型在預測上可能會失準,所以需將超出的數據再納入模型中重新訓練冷卻水塔的模型。


    摘要 I 目錄 II 圖目錄 IV 表目錄 V 第一章 緒論 1 1-1、 前言 1 1-2、 研究動機 1 1-3、 文獻回顧 3 第二章 冷卻水塔系統 6 2-1、 系統簡介 6 2-2、 冷卻水塔 7 2-3、 冷卻水塔空氣進出口溫度濕度測量儀器配置 9 第三章 研究方法 11 3-1、 基本計算 11 3-1-1、 冷卻水塔風量計算 11 3-1-2、 特性曲線 13 3-2、 冷卻水塔模型 14 3-3、 多模型建模 17 3-3-1、 多模型描述 17 3-3-2、 模糊c-Mean分群法(FCM, Fuzzy c-Mean) 18 3-3-3、 滿意模糊c-Mean分群法 19 3-3-4、 局部模型參數辨識 21 3-3-5、 基於局部性能指標的多模型辨識演算法 22 3-3-6、 多模型離線建模方法 23 3-4、 特性曲線建立 26 3-5、 整體研究流程圖 27 第四章 研究結果 28 4-1、 風扇出口風量計算 28 4-2、 CT-4冷卻水塔出口水溫模型 29 4-3、 特性曲線的建立 35 4-4、 本研究方法與CTI效能評估方法比較 38 4-4-1、 CTI效能評估方法簡介 38 4-4-2、 CTI效能評估方法改良 40 第五章 結論 42 參考文獻 43

    [1] Cooling Tower Institute, CTI Code Tower, Standard specifications,
    acceptance test for water-cooling towers, Part I, Part II and Part
    III, CTI Code ATC-105, Revised, February 1990.
    [2] Merkel, F. Verdunstungsk□hlung, VDI-Zeitchrift, 1925, 70(1):123-128.
    [3] Jaber, H., Webb, R.L. Design of cooling towers by the effectiveness-NTU Method. ASME J. Heat Transfer, 1989, 111(1): 837-843.
    [4] Poppe, M., R□gener, H. Berechnung von R□ckk□hlwerken. VDI-W□rmeatlas, 1991: Mi 1-Mi 15.
    [5] Kloppers, J.C., Kr□ger, D.G. Cooling tower performance evaluation: Merkel, Poppe, and e-NTU methods of analysis. Journal of Engineering for Gas Turbines and Power, 2005, 127(1): 1-7.
    [6] Goshayshi, H.R., Missenden, J.F. The investigation of cooling tower packing in various arrangements. Applied Thermal Engineering, 2000, 20(1):69-80.
    [7] Milosavljevic, N., Heikkil□, P. A comprehensive approach to cooling tower design. Applied Thermal Engineering, 2001, 21(9): 899-915.
    [8] Lemouari,M., Boumaza, M., Mujtaba, I.M. Thermal performances investigation of a wet cooling tower. Applied Thermal Engineering, 2007, 27(5/6): 902-909.
    [9] Cortinovis, G.F., Paiva, J.L., Song, T.W., Pinto, J.M. A systemic approach for optimal cooling tower operation. Energy Conversion and Management, 2009, 50(9): 2200-2209.
    [10] Yao, Y., Lian, Z.W., Hou, Z.J., Zhou, X.J. Optimal operation of a large cooling system based on an empirical model. Applied Thermal Engineering, 2004, 24(16): 2303-2321.
    [11] S□ylemez, M.S. On the optimum performance of forced draft counter flow cooling towers. Energy Conversion and Management, 2004, 45(15/16): 2335-2341.
    [12] Muangnoi, T., Asvapoositul, W., Wongwises, S. An exergy analysis on the performance of a counter flow wet cooling tower. Applied Thermal Engineering, 2007, 27(5/6): 910-917.
    [13] Ataei, A., Panjeshahi, M.H., Gharaie, M. Performance evaluation of counter-flow wet cooling towers using exergetic analysis. Transactions of the Canadian Society for Mechanical Engineering, 2008, 32(3/4): 499-511.
    [14] Khan, J.R., Qureshi, B.A., Zubair, S.M. A comprehensive design and performance evaluation study of counter flow wet cooling towers. International Journal of Refrigeration, 2004,27(8): 914-923
    [15] Hosoz, M., Ertunc, H.M., Bulgurcu, H. Performance prediction of a cooling tower using artificial neural network. Energy Conversion and Management, 2007, 48(4): 1349-1359.
    [16] Gao, M., Sun, F.Z., Zhou, S.J., Shi, Y.T., Zhao, Y.B., Wang, N.H. Performance prediction of wet cooling tower using artificial neural network under cross-wind conditions. International Journal of Thermal Sciences, 2009, 48(3): 583-589.
    [17] Qi, X.N., Liu, Z.Y., Li D.D. Numerical simulation of shower cooling tower based on artificial neural network. Energy Conversion and Management, 2008, 49(4): 724-732.
    [18] Gregorčič G., Lightbody, G. Local model network identification with Gaussian process. IEEE Transactions on Neural Networks, 2007, 18(5): 1404-1423.
    [19] Ga□□n, J., Rahman Al-Kassir, A., Gonz□lez,J.F., Macı□as, A., Diaz, M.A. Influence of the cooling circulation water on the efficiency of a thermonuclear plant. Applied Thermal Engineering, 2005, 25(4):485-494.
    [20] Xue, Z.K., Li, S.Y. A multi-model identification algorithm based on weighted cost function and application in thermal process. Acta Automatica Sinica, 2005, 31(3): 470-474.
    [21] Welty, J.R., Wicks, C.E., Wilson, R.E., Rorrer, G. Fundamentals of momentum, heat, and mass Transfer (4th Edition). John Wiley & Sons, Inc., New York, 2000,pp:68-73.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE