簡易檢索 / 詳目顯示

研究生: 許智洋
Hsu, Chih-Yang
論文名稱: 探討鋰摻雜氧化鋅薄膜及一維奈米結構中性質的影響
指導教授: 吳振名
Wu, Jenn-Ming
口試委員: 吳振名
陳世偉
李奕賢
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 97
中文關鍵詞: 氧化鋅摻雜p型半導體
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此實驗分為兩部分,第一部分為低比例(<1at %)鋰摻雜之氧化鋅薄膜,探討退火溫度、退火氣氛以及摻雜濃度對電性、表面形貌、結晶性質以及光譜的影響;第二部分則用水熱法製作氧化鋅摻雜鋰的一維奈米結構,並作NWFET (Nanowire Field Effect Transadelistor)單根奈米線的電性探討。
    第一部分實驗,主要利用溶膠-凝膠法(Sol-gel method),在玻璃基板上,以2500rpm旋轉塗佈(spin-coating)鍍製膜厚控制在200奈米左右的氧化鋅薄膜,探討鋰離子濃度及溫度熱處理的效應。
    XPS量測結果顯示出, 0.5%、550OC利於p-type性質。 而在霍爾量測可以發現到隨著濃度的變小,電阻率有明顯的下降趨勢,且在0.25%會發現到相較於純氧化鋅薄膜有更小的電阻率;在550 OC之 0.5%有最佳的p-type性質,電洞載子濃度1.19x1016cm-3,電阻值55.92 Ωcm,載子遷移率為1.82 cm2/V•s。而在500OC、600OC傾向於n-type性質。
    由電性量測,將0.5% 550 OC試片再鍍上純氧化鋅薄膜做均質介面電性測試,在I-V圖形中也可以發現到有pn-juction 電流整流效應。證明所鍍製出來的薄膜確實為p型半導體。
    第二部分實驗,則是氧化鋅奈米柱摻雜鋰實驗,比照文獻[80]利用控濺鍍法在矽基板鍍上一層約200奈米的鎵摻雜氧化鋅種子層(GZO),接著利用水熱溶液法(0.01M的HMT和Zn(NO3)2)成長鋰摻雜氧化鋅奈米柱0.03M鋰摻雜3小時,最後將試片置入爐管退火,以環境溫度500OC、氧氣氛下退火。在此討論前段為後以每階12小時,六階段的連續製程方式製作成奈米線;後段則是改變水熱法生長環境因素,固定摻雜比例,改變前驅物濃度下做鋰摻雜的探討,過程固定12小時生長時間。隨後將兩製成的奈米柱做後續製成單根奈米線場效電晶體(NWFET)元件,探討單根奈米線的性質。
    實驗結果討論,以多階段連續製程方式,製作成的摻雜鋰的氧化鋅奈米線,其長寬比有上升的趨勢,並保存了原本的形貌;而在條件B條件下的奈米柱,長寬比大幅度增加,剛性下降垂直性下降,頂端呈現針錐狀。
    由XPS結果顯示,72小時多階段製程的缺陷化學比例與3小時製程的差異性不大,推測72小時也有類似性質;前驅物調變,條件B中比較起來有更好的缺陷化學比例,推測條件B除了表面形貌的改變外,有摻雜效率的提升。製成NWFET元件作電性量測,由於電極選用白金在I-V圖,電極接面為schottky contact;而由Id-Vd圖可以發現到,說明兩條件下單根奈米柱的形式較類似於n型通道的形式。


    目錄 第一章緒論 1 1-1 前言 1 第二章文獻回顧 4 2-1 ZnO 4 2-2 p-type ZnO摻雜 4 2-3 鋰在氧化鋅的理論 6 2-3-1 LiZn 7 2-3-2 Lii 8 2-4 ZnO的本質缺陷 9 2-4-1鋅空缺(VZn) 9 2-4-2 氧空缺(VO) 10 2-4-3鋅間隙(Zni) 10 2-4-4 間隙氧(Oi) 11 2-5 一維氧化鋅材料 11 2-5-1前言 11 2-5-2水熱法成長氧化鋅奈米柱 12 2-5-3 單根奈米線場效電晶體[66-68] 14 第三章 實驗方法 22 3-1 實驗大綱 22 3-2 製備 p-type Li doped LixZn1-xO 薄膜 22 3-2-1 基板準備: 22 3-2-2 鍍製步驟說明: 23 3-2-3 電性量測鍍製元件說明: 23 3-3製備鋰摻雜氧化鋅奈米柱 24 3-3-1準備基板 24 3-3-2 磁控濺鍍鍍製GZO 24 3-3-3成長氧化鋅奈米柱 25 3-4 量測儀器 26 第四章 結果與討論 33 4-1 鋰摻雜氧化鋅薄膜物理性質探討 33 4-1-1前言: 33 4-1-2 氧化鋅鋰摻雜量的性質探討 34 4-2 鋰摻雜氧化鋅奈米柱性質探討 45 4-2-1 前言 45 4-2-2階段性鋰摻雜奈米柱實驗結果與討論: 46 4-2-3 水熱法環境變因影響 50 第五章 結論 89 參考文獻 91

    參考文獻

    1. Xu, W. Z.; Ye, Z. Z.; Zeng, Y. J.; Zhu, L. P.; Zhao, B. H.; Jiang, L.; Lu, J. G.; He, H. P.; Zhang, S. B., ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters 2006, 88.
    2. Wei, Z. P.; Lu, Y. M.; Shen, D. Z.; Zhang, Z. Z.; Yao, B.; Li, B. H.; Zhang, J. Y.; Zhao, D. X.; Fan, X. W.; Tang, Z. K., Room temperature p-n ZnO blue-violet light-emitting diodes. Applied Physics Letters 2007, 90 (4).
    3. Jiao, S. J.; Zhang, Z. Z.; Lu, Y. M.; Shen, D. Z.; Yao, B.; Zhang, J. Y.; Li, B. H.; Zhao, D. X.; Fan, X. W.; Tang, Z. K., ZnO p-n junction light-emitting diodes fabricated on sapphire substrates. Applied Physics Letters 2006, 88 (3).
    4. Kong, X. Y.; Wang, Z. L., Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters 2003, 3, 1625-1631.
    5. Wang, X. D.; Summers, C. J.; Wang, Z. L., Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Letters 2004, 4 (3), 423-426.
    6. Wang, Z. L., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics-Condensed Matter 2004, 16 (25), R829-R858.
    7. Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J., Field emission from well-aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters 2002, 81 (19), 3648-3650.
    8. Tseng, Y. K.; Huang, C. J.; Cheng, H. M.; Lin, I. N.; Liu, K. S.; Chen, I. C., Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Advanced Functional Materials 2003, 13 (10), 811-814.
    9. Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P., Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters 2003, 83 (1), 144-146.

    10. Beek, W. J. E.; Wienk, M. M.; Janssen, R. A. J., Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Advanced Materials 2004, 16 (12), 1009.
    11. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., Nanowire dye-sensitized solar cells. Nature Materials 2005, 4 (6), 455-459.
    12. Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins,C.L.;To, B.; Noufi, R., 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Progress in Photovoltaics 2008, 16 (3), 235-239.
    13. Jin, Y. Z.; Wang, J. P.; Sun, B. Q.; Blakesley, J. C.; Greenham, N. C., Solution-processed ultraviolet photodetedtors based on colloidal ZnO nanoparticles. Nano Letters 2008, 8 (6), 1649-1653.
    14. Liang, S.; Sheng, H.; Liu, Y.; Huo, Z.; Lu, Y.; Shen, H., ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth 2001, 225 (2-4), 110-113.
    15. Sharma, P.; Sreenivas, K.; Rao, K. V., Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering. Journal of Applied Physics 2003, 93 (7), 3963-3970.
    16. Zu P, Tang ZK, Wong GKL, Kawasaki M, Ohtomo A, Koinuma K. Solid-State Commun 103, 459-463 (1997).
    17. Bagnall, D. M.; Chen, Y. F.; Zhu, Z.; Yao, T.; Koyama, S.; Shen, M. Y.; Goto, T., Optically pumped lasing of ZnO at room temperature. Applied Physics Letters 1997, 70 (17), 2230-2232
    18. Wraback M, Shen H, Liang S, Gorla CR, Lu Y. Appl Phys Lett 74, 507-509 (1999).
    19. Lee JM, Kim KK, Park SJ, Choi WK. Appl Phys Lett 78, 3842-3844 (2001).
    20. Kucheyev SO, Bradley JE, Williams JS, Jagadish C, Swain MV. Appl Phys Lett 80, 956-958 (2002).
    21. Park, C. H.; Zhang, S. B.; Wei, S. H., Origin of p-type doping difficulty in ZnO: The impurity perspective. Physical Review B 2002, 66 (7).
    22. Schmidt-Mende, L.; MacManus-Driscoll, J. L., ZnO - nanostructures, defects, and devices. Materials Today 2007, 10 (5), 40-48.
    23. Myong SY, Baik SJ, Lee CH, Cho WY, Lim KS, Jpn. J. Appl. Phys Part2 36, L1078-L1081 (1997).

    24. Ataev BM, Bagamadova AM, Djabrailov AM, Mamedo VV, Rabadanov RA. Thin Solid Films 260, 19-20 (1995).
    25. Florescu D, Mourok LG, Pollack FH, Look DC, Cantwell G, Li X. J. Appl Phys 91, 890-892 (2002).
    26. Laks DB, Van de Walle CG, Neumark GF, Pantelides ST. Materials Science Forum 83-87, 1225-1234 (1992).
    27. Neumark, G. F., Achievement of well conducting wide band-gap semiconductors: Role of solubility and of nonequilibrium impurity incorporation. Physical Review Letters 1989, 62 (15), 1800-1803.
    28. Van de Walle CG, Laks DB, Neumark GF, Pantelides ST. Phys. Rev. B 47, 9425-9434 (1993). Park, C. H.; Zhang, S. B.; Wei, S. H., Origin of p-type doping difficulty in ZnO: The impurity perspective. Physical Review B 2002, 66 (7).
    29. Lu JG, Zhang YZ, Ye ZZ, Zeng YJ, He HP, Zhu LP, Huang JY, Wang L, Yuan J, Zhao BH, Li XH. APPLIED PHYSICS LETTERS 89, 112–113 (2006).
    30. Wang DY, Zhou J, Liu GZ. Journal of Alloys and Compounds 481, 802–805 (2009).
    31. Zeng YJ, Ye ZZ, Lu JG, Xu WZ, Zhu LP, Zhao BH. APPLIED PHYSICS LETTERS 89, 042106 (2006).
    32. Kanai Y. Jpn. J. Appl. Phys., Part 1 30, 703-707 (1991).
    33. Kanai Y. Jpn. J. Appl. Phys, Part 1 30, 2021-2022 (1991).
    34. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho SJ, Morkoç H. Journal of Applied Physics 98, p.041301-1~041301-103 (2005).
    35. Park, C. H.; Zhang, S. B.; Wei, S. H., Origin of p-type doping difficulty in ZnO: The impurity perspective. Physical Review B 2002, 66 (7).
    36. Yamamoto T, Katayama-Yoshida H. Jpn J Appl Phys 38, L166-L169 (1999).
    37. Duclere JR, Novotny M, Meaney A, O'Haire R, McGlynn E, Henry MO, Mosnier, JP. SUPERLATTICES AND MICROSTRUCTURES 38, 397-405 (2005)
    38. Look DC, Jones RL, Sizelove JR, Garces NY, Giles NC, Halliburton LE. Phys. Status Solidi A 195, 171-177 (2003).
    39. Pearton, S. J.; Norton, D. P.; Ip, K.; Heo, Y. W.; Steiner, T., Recent progress in processing and properties of ZnO. Progress in Materials Science 2005, 50 (3), 293-340.
    40. Chen, L. L.; He, H. P.; Ye, Z. Z.; Zeng, Y. J.; Lu, J. G.; Zhao, B. H.; Zhu, L. P., Influence of post-annealing temperature on properties of ZnO : Li thin films. Chem. Phys. Lett. 2006, 420 (4-6), 358-361.
    41. Cong GW, Peng WQ, Wei HY, Han XX, Wu JJ, Liu XL, Zhu QS, Wang ZG. APPLIED PHYSICS LETTERS 88, 062110 (2006).
    42. Zhang BY, Yao B, Li YF, Zhang ZZ, Li BH, Shan CX, Zhao DX, Shen DZ. APPLIED PHYSICS LETTERS 97, 222101 (2010) .
    43. Lu JG, Zhang YZ, Ye ZZ, Zhu LP, Wang L, Zhao BH. APPLIED PHYSICS LETTERS 88, 222114 (2006).
    44. Wanga XH, Yao B, Shena DZ, Zhanga ZZ, Lia BH, Weia ZP, Lua YM, Zhaoa DX, Zhanga JY, Fana XW, Guanc LX, Congc CX. Solid State Communications 141, 600–604 (2007).
    45. Das SN, Choi JH, Kar JP, Lee TI, Myoung JM. Materials Chemistry and Physics 121, 472–476 (2010).
    46. Wardle, M. G., J. P. Goss, et al. (2005). "Theory of Li in ZnO: A limitation for Li-based p-type doping." Physical Review B 71(15)
    47. Janotti A, Van de Walle CG. PHYSICAL REVIEW B 76, 165202 (2007).
    48. Lukas SM, MacManus-Driscoll JL. materialstoday 10, 40-48 (2007).
    49. Jin, S.; Whang, D. M.; McAlpine, M. C.; Friedman, R. S.; Wu, Y.; Lieber, C. M., Scalable interconnection and integration of nanowire devices without registration. Nano Letters 2004, 4 (5), 915-919.
    50. Greytak, A. B.; Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M., Growth and transport properties of complementary germanium nanowire field-effect transistors. Applied Physics Letters 2004, 84 (21), 4176-4178.
    51. Song, Y.; Schmitt, A. L.; Jin, S., Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Letters 2007, 7 (4), 965-969.
    52. Wang, Z. L., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics-Condensed Matter 2004, 16 (25), R829-R858.
    53. Chen, C. C.; Yeh, C. C.; Chen, C. H.; Yu, M. Y.; Liu, H. L.; Wu, J. J.; Chen, K. H.; Chen, L. C.; Peng, J. Y.; Chen, Y. F., Catalytic growth and characterization of gallium nitride nanowires. Journal of the American Chemical Society 2001, 123 (12), 2791-2798.

    54. Jun, Z.; Xu, N.; Zhong, L. W., Dissolving behavior and stability of ZnO wires iin biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures. Advanced Materials 2006, 18 (18), 2432.
    55. Nobis, T.; Kaidashev, E. M.; Rahm, A.; Lorenz, M.; Lenzner, J.; Grundmann, M., Spatially inhomogeneous impurity distribution in ZnO micropillars. Nano Letters 2004, 4 (5), 797-800.
    56. Yu, D.; Hu, L.; Li, J.; Hu, H.; Zhang, H.; Zhao, Z.; Fu, Q., Catalyst-free synthesis of ZnO nanorod arrays on InP (001) substrate by pulsed laser deposition. Materials Letters 2008, 62 (25), 4063-4065.
    57. Kim, M. S.; Yim, K. G.; Choi, H. Y.; Cho, M. Y.; Kim, G. S.; Jeon, S. M.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Son, J.-S.; Lee, J. I.; Leem, J.-Y., Thermal annealing effects of MBE-seed-layers on properties of ZnO nanorods grown by hydrothermal method. Journal of Crystal Growth 2011, 326 (1), 195-199.
    58. Perillat-Merceroz, G.; Jouneau, P. H.; Feuillet, G.; Thierry, R.; Rosina, M.; Ferret, P., MOCVD growth mechanisms of ZnO nanorods. In 16th International Conference on Microscopy of Semiconducting Materials, Walther, T. N. P. D. H. J. L. C. A. G., Ed. 2010; Vol. 209.
    59. Qiu JJ, Li XM, He WZ, Park SJ, Kim HK, Hwang YH, Lee JH, Kim YD. Nanotechnology 20, 155603 (2009).
    60. Li QW, Bian JM. Applied Surface Science 256, 1698-1702 (2010).
    61. Ma T, Guo M. Nanotechnology 18, 035605 (2007).
    62. Wang SF, Tseng TY, Wang YR, Wang CY, Lu HC, Shih WL. International Journal of Applied Ceramic Technology 5, 419-429 (2008).
    63. Laudise, R. A.; Ballman, A. A., HYDROTHERMAL SYNTHESIS OF ZINC OXIDE AND ZINC SULFIDE. Journal of Physical Chemistry 1960, 64 (5), 688-691.
    64. Ding, M.; Zhao, D. X.; Yao, B.; Li, B. H.; Zhang, Z. Z.; Shen, D. Z., The p-type ZnO film realized by a hydrothermal treatment method. Applied Physics Letters 2011, 98 (6).
    65. Bitenc, M.; Podbrscek, P.; Orel, Z. C.; Cleveland, M. A.; Paramo, J. A.; Peters, R. M.; Strzhemechny, Y. M., Correlation between Morphology and Defect Luminescence in Precipitated ZnO Nanorod Powders. Crystal Growth & Design 2009, 9 (2), 997-1001.
    66. Fan, Z. Y.; Wang, D. W.; Chang, P. C.; Tseng, W. Y.; Lu, J. G., ZnO nanowire field-effect transistor and oxygen sensing property. Applied Physics Letters 2004, 85 (24), 5923-5925.
    67. Lee, J.; Cha, S.; Kim, J.; Nam, H.; Lee, S.; Ko, W.; Wang, K. L.; Park, J.; Hong, J., p-Type Conduction Characteristics of Lithium-Doped ZnO Nanowires. Advanced Materials 2011, 23 (36), 4183.
    68. Park, W. I.; Kim, J. S.; Yi, G. C.; Bae, M. H.; Lee, H. J., Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors. Applied Physics Letters 2004, 85 (21), 5052-5054.
    69. Keem, K.; Kim, H.; Kim, G. T.; Lee, J. S.; Min, B.; Cho, K.; Sung, M. Y.; Kim, S., Photocurrent in ZnO nanowires grown from Au electrodes. Applied Physics Letters 2004, 84 (22), 4376-4378.
    70. Law, J. B. K.; Thong, J. T. L., Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Applied Physics Letters 2006, 88 (13).
    71. Li, Y.; Della Valle, F.; Simonnet, M.; Yamada, I.; Delaunay, J.-J., High-performance UV detector made of ultra-long ZnO bridging nanowires. Nanotechnology 2009, 20 (4).
    72. Lu, J. G.; Zhang, Y. Z.; Ye, Z. Z.; Zeng, Y. J.; He, H. P.; Zhu, L. P.; Huang, J. Y.; Wang, L.; Yuan, J.; Zhao, B. H.; Li, X. H., Control of p- and n-type conductivities in Li-doped ZnO thin films. Applied Physics Letters 2006, 89 (11).
    73. Major S, Kumar S, Bhatnagar M, Chopra KL. Applied Physics Letters 49, 394-396 (1986).
    74. Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Sun C, Huang RF, Wen LS. Applied Surface Science 158, 134-140 (2000).Lai LW and Lee CT. Materials Chemistry and Physics 110, 393-396 (2008).
    75. Wang XH, Yao B, Shena DZ, Zhanga ZZ, Lia BH, Weia ZP, Lua YM, Zhaoa DX, Zhanga JY, Fana XW, Guanc LX, Congc CX. Solid State Communications 141, 600–604 (2007).
    76. Dutta T, Gupta P, Gupta A, Narayan J. JOURNAL OF APPLIED PHYSICS 108, 083715 (2010).
    77. Lin BX, Fu ZX, Jia YB. APPLIED PHYSICS LETTERS 79, 943-945 (2001).
    78. Wardle, M. G., J. P. Goss, et al. (2005). "Theory of Li in ZnO: A limitation for Li-based p-type doping." Physical Review B 71(15).
    79. Ghosh, T.; Basak, D., Effect of Cu-Li Co-Doping on the Structural, Optical, and Optoelectronic Properties of Sol-Gel ZnO Thin Films. Journal of the Electrochemical Society 2009, 156 (12), H916-H920.
    80. 陳彥溥,水熱法摻鋰生長氧化鋅奈米柱性質研究,2011,清華大學,碩士論文
    81. Sugunan, A.; Warad, H. C.; Boman, M.; Dutta, J., Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology 2006, 39 (1), 49-56.
    82. Choi, Y.-S.; Kang, J.-W.; Hwang, D.-K.; Park, S.-J., Recent Advances in ZnO-Based Light-Emitting Diodes. Ieee Transactions on Electron Devices 2010, 57 (1), 26-41.
    83. Bin Kwon, Y.; Shin, S. W.; Lee, H. K.; Lee, J. Y.; Moon, J. H.; Kim, J. H., Formation of ZnO thin films consisting of nano-prisms and nano-rods with a high aspect ratio by a hydrothermal technique at 60 degrees C. Current Applied Physics 2011, 11 (1), S197-S201.
    84. Chang, W. Y.; Cheng, K. J.; Tsai, J. M.; Chen, H. J.; Chen, F.; Tsai, M. J.; Wu, T. B., Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals. Applied Physics Letters 2009, 95 (4).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE