研究生: |
宇 宙 K, Guruvidyathri |
---|---|
論文名稱: |
鈷鉻錳鎳體系高熵合金的實驗和計算熱力學研究 EXPERIMENTAL AND COMPUTATIONAL THERMODYNAMIC STUDIES OF CoCrMnNi, CoCrCuMnNi AND AlCoCrMnNi HIGH-ENTROPY ALLOYS |
指導教授: |
Murty, B. S.
Murty, B. S. HariKumar, K. C. HariKumar, K. C. 葉均蔚 Yeh, Jien-Wei |
口試委員: |
Kottada, Ravisankar
Kottada, Ravisankar Phanikumar, Gandham Phanikumar, Gandham HariKumar, K. C. HariKumar, K. C. |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 83 |
中文關鍵詞: | 高熵合金 、計算相圖模擬 、合金設計 、相穩定分析 |
外文關鍵詞: | High-entropy alloys, Calphad, Compositional design, Phase stability studies |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高熵合金(HEAs)是具有五種或更多種等量元素的新型材料。 HEA研究的一個主要挑戰是缺乏相穩定性信息。由於缺乏高階相圖,成分選擇是另一大挑戰。兩種主要類型的方法用於組合物選擇,兩者都具有某些挑戰。一種是簡單的相位預測方法,另一種是穩健的Calphad(PHAse Diagram的計算)方法。簡單的相位預測方法具有顯著的不准確性,並且沒有一種方法直接使用吉布斯能量。在Calphad方法中,不可用或不准確的Gibbs能量數據庫是問題。本研究試圖解決這些問題。
研究了CoCrMnNi,CoCrCuMnNi和AlCoCrMnNi高熵合金的相穩定性。將真空電弧熔化的樣品在1273K下熱處理24小時,然後在673,873和1073K下熱處理240小時。使用XRD和SEM表徵微結構。
為了檢查Calphad方法的成功,使用Thermo-Calc軟件中的TCHEA數據庫進行計算,並將結果與實驗微結構進行比較。 1273 K微結構與計算相匹配。在大多數長期熱處理情況下,在所有三種合金中都觀察到富含Cr,Co和Mn的σ相。計算在預測σ相穩定性方面不成功。為了解決這種差異,需要在Co-Cr,Cr-Mn,Co-Mn和Co-Cr-Mn系統中開發σ相的新吉布斯能量函數。熱力學評估用於此目的。輸入生成是通過文獻數據收集,算法計算和涉及平衡合金和擴散偶的實驗。在熱力學評估之後,新數據用於替換TCHEA數據庫中的相應功能。使用TCHEA(改進)數據庫進行計算。新數據成功地提供了更準確的結果,因為σ相出現在673 - 1073 K的計算中,與實驗相匹配。 TCHEA(改進的)數據將極大地提高Calphad對HEAs應用的準確性,例如使用高通量方法快速篩選有用的組合物。
除了相穩定性研究和改進的Calphad研究外,本文還提出了一種簡單的組合設計方法。在用於組成設計的簡單方法中,沒有一種方法能夠同時正確地預測當前三種合金中的相。提出了一種使用二元吉布斯能量 - 成分(G-x)圖來預測相位的新方法。它只需要單獨的二元吉布斯能量函數而不是多組分數據庫。它適用於設計單相作為目標微結構的HEA。此外,它也為多相形成提供了重要的見解。它成功地預測了目前合金中的相以及文獻中報導的少量合金。它提供了二元相圖檢查方法和多組分Calphad研究之間的折衷。由於它只需要對單個二進制系統進行熱力學描述,因此可以通過HEA社區更廣泛地使用可用的二進制Calphad描述。
High-entropy alloys (HEAs) are promising new class of materials having five or more elements in equiatomic amounts. A major challenge in HEA research is lack of phase stability information. Composition selection is another big challenge due to the lack of higher order phase diagrams. Two major types of methods are used for composition selection, both with certain challenges. One type is simple phase prediction methods and the other one is the robust Calphad (CALculation of PHAse Diagram) approach. Simple phase prediction methods have significant inaccuracies and none of the methods use Gibbs energy directly. In the Calphad approach, unavailable or inaccurate Gibbs energy databases are the issues. The present study is an attempt to address these issues.
Phase stability of CoCrMnNi, CoCrCuMnNi and AlCoCrMnNi high-entropy alloys is investigated. Vacuum arc melted samples were heat treated at 1273 K for 24 h followed by heat treatment at 673, 873 and 1073 K for 240 h. Microstructures were characterized using XRD and SEM.
In order to check the success of the Calphad method, calculations using TCHEA database in Thermo-Calc software were performed and the results were compared with the experimental microstructures. 1273 K microstructures were matching with the calculations. In most of the long-term heat treatment cases, σ-phase rich in Cr, Co and Mn was observed in all the three alloys. Calculations were not successful in predicting the σ-phase stability. In order to address this discrepancy, development of new Gibbs energy functions of σ-phase in Co-Cr, Cr-Mn, Co-Mn and Co-Cr-Mn systems were required. The thermodynamic assessment was used for the purpose. Input generation was through data collection from literature, ab intio calculations and experiments involving equilibrated alloys and diffusion couple. After the thermodynamic assessment, the new data are used to replace the corresponding functions in TCHEA database. With the TCHEA (Improved) database calculations were performed. The new data was successful in providing more accurate results, since σ-phase appeared in calculations at 673 – 1073 K, matching with the experiments. The TCHEA (Improved) data will greatly improve the accuracy in applications of Calphad to HEAs, like rapid screening of useful compositions using high-throughput methods.
Besides phase stability studies and improved Calphad studies, a simple method for compositional design is also proposed in the present thesis. Among the simple methods for compositional design, none of the methods were able to simultaneously predict phases in the present three alloys correctly. A new approach of using binary Gibbs energy - composition (G-x) plots for predicting the phases is proposed. It requires only individual binary Gibbs energy functions instead of a multicomponent database. It is suitable for designing a HEA with a single-phase as the target microstructure. Besides, it gives important insights into multiphase formation as well. It successfully predicts the phases in the present alloys as well as few alloys reported in the literature. It offers a compromise between binary phase diagram inspection methods and multicomponent Calphad studies. Since it requires only thermodynamic descriptions of individual binary systems, it will enable wider usage of available binary Calphad descriptions by the HEA community.
Allibert C., Bernard C., Valignat N., and Dombre M. (1978), Co-Cr binary system: Experimental re-determination of the phase diagram and comparison with the diagram calculated from the thermodynamic data. J. Less-Common Met. 59, 211–228.
Bell H.B., Hajra J.P., Putland F.H., and Spencer P.J. (1973), The Determination of the Thermodynamic Properties of Cobalt-Chromium Alloys Using Solid-Electrolyte EMF and High-Temperature Calorimetric Techniques. Met. Sci. J. 7, 185–190.
Bracq G., Laurent-Brocq M., Perrière L., Pirès R., Joubert J.M., and Guillot I. (2017), The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system. Acta Mater. 128, 327–336.
Brif Y., Thomas M., and Todd I. (2015), The use of high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93–96.
Cantor B., Chang I.T.H., Knight P., and Vincent A.J.B. (2004), Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218.
Carlile S.J., Christian J.W., and Hume-Rothery W. (1949), J. Inst. Met. 76, 169–94.
Chen H.L., Mao H., and Chen Q. (2018), Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips. Mater. Chem. Phys. 210, 279–290.
Chiba A. (1971), Mobility of Interphase Boundary in Metals. Thesis. Tohoku University, Japan
Chou H.P., Chang Y.S., Chen S.K., and Yeh J.W. (2009), Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 163, 184–189.
Gaertner D., Kottke J., Wilde G., Divinski S. V., and Chumlyakov Y. (2018), Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Mater. Res. 33, 3184–3191.
Gao M., and Alman D. (2013), Searching for Next Single-Phase High-Entropy Alloy Compositions. Entropy 15, 4504–4519.
Gao M.C., Yeh J.W., Liaw P.K., and Zhang Y. eds. (2016), High-Entropy Alloys: Fundamentals and Applications, Springer International Publishing, Cham
Gorsse S., and Senkov O. (2018), About the Reliability of CALPHAD Predictions in Multicomponent Systems. Entropy 20, 1–9.
Gorsse S., and Tancret F. (2018), Current and emerging practices of CALPHAD toward the development of high entropy alloys and complex concentrated alloys. J. Mater. Res. 33, 2899–2923.
Guo S., and Liu C.T. (2011), Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 21, 433–446.
Guo S., Ng C., Lu J., and Liu C.T. (2011), Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505.
Guo S., Ng C., Wang Z., and Liu C.T. (2014), Solid solutioning in equiatomic alloys: Limit set by topological instability. J. Alloys Compd. 583, 410–413.
Guruvidyathri K., Hari Kumar K.C., Yeh J.W., and Murty B.S. (2017), Topologically Close-packed Phase Formation in High Entropy Alloys: A Review of Calphad and Experimental Results. JOM. 69, 2113–2124.
Hall E.O., and Algie S.H. (1966), The Sigma Phase. Metall. Rev. 11, 61–88.
Hari Kumar K.C., and Wollants P. (2001), Some guidelines for thermodynamic optimisation of phase diagrams. J. Alloys Compd. 320, 189–198.
Hasebe M., Oikawa K., and Nishizawa T. (1982), Computer Calculation of Phase Diagrams for Co-Cr and Co-Mn Systems. J. Japan Inst. Met. 46, 577–583.
He F., Wang Z., Wu Q., Niu S., Li J., Wang J., and Liu C.T. (2017), Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scr. Mater. 131, 42–46.
Hillert M. (2007), Phase Equilibria, Phase Diagrams and Phase Transformations. Cambridge University Press, Cambridge
Hsieh K.C., Yu C.F., Hsieh W.T., Chiang W.R., Ku J.S., Lai J.H., Tu C.P., and Yang C.C. (2009), The microstructure and phase equilibrium of new high performance high-entropy alloys. J. Alloys Compd. 483, 209–212.
Huang C., Zhang Y., Shen J., and Vilar R. (2011), Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V alloy. Surf. Coatings Technol. 206, 1389–1395.
Huang W. (1989), An assessment of Co-Mn System. Calphad 13, 231–242.
Inselberg A. (1985), The plane with parallel coordinates. Vis. Comput. 1, 69–91.
Jansson B. (1985), PhD Thesis, Royal Institute of Technology, Stockholm, Sweden.
Kao Y.F., Chen T.J., Chen S.K., and Yeh J.W. (2009), Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57–64.
Karati A., Guruvidyathri K., Hariharan V.S., and Murty B.S. (2019), Thermal stability of AlCoFeMnNi high-entropy alloy. Scr. Mater. 162, 465–467.
Kaufman L. (1959), The lattice stability of titanium and zirconium. Acta Metall. 7, 575–587.
Kodentsov A.A., Bastin G.F., and Van Loo F.J.J. (2001), The diffusion couple technique in phase diagram determination. J. Alloys Compd. 320, 207–217.
Köster H., and Rittner H. eds. (2016), Co-Mn-Ni Ternary Vertical Section, in ASM Alloy Phase Diagrams Database, Villars, P., Okamoto, H. and Cenzual, K. eds. ASM International, Materials Park, OH, 2016. http://www.asminternational.org,
Kresse G., and Furthmiiller J. (1996a), Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50.
Kresse G., and Furthmüller J. (1996b), Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186.
Kulkarni K., and Chauhan G.P.S. (2015), Investigations of quaternary interdiffusion in a constituent system of high entropy alloys. AIP Adv. 5, 097162.
Kusoffsky A., and Jansson B. (1997), A thermodynamic evaluation of the Co-Cr and the C-Co-Cr systems. Calphad 21, 321–333.
Lee B. (1993), A Thermodynamic Evaluation of the Cr-Mn and Fe-Cr-Mn Systems. Metall. Trans. A 24A, 1919–1933.
Li Z., Mao H., Korzhavyi P.A., and Selleby M. (2016), Thermodynamic re-assessment of the Co-Cr system supported by first-principles calculations. CALPHAD 52, 1–7.
Lukas H.L., Fries S.G., and Sundman B. (2007), Computational Thermodynamics. Cambridge University Press, Cambridge.
Ma D., Yao M., Pradeep K.G., Tasan C.C., Springer H., and Raabe D. (2015), Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater. 98, 288–296.
Manzoni A., Daoud H., Mondal S., Van Smaalen S., Völkl R., Glatzel U., and Wanderka N. (2013), Investigation of phases in Al23Co15Cr23Cu8Fe15Ni16 and Al8Co17Cr17Cu8Fe17Ni33 high entropy alloys and comparison with equil. J. Alloys Compd. 552, 430–436.
Massalski T.B., and Okamoto H. (1990), Binary alloy phase diagrams, 2nd ed. Materials Park, (OH): ASM International
Miracle D.B., and Senkov O.N. (2016), A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511.
Momma K., and Izumi F. (2011), VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276.
Murty B.S., Yeh J.W., and Ranganathan S. (2014), High Entropy Alloys. First ed. Butterworth-Heinemann, London
Murty B.S., Yeh J.W., and Ranganathan S. (2019), High-Entropy Alloys. Second ed. Butterworth-Heinemann, London
Nadutov V.M., and Mazanko V.F. (2017), Tracer Diffusion of Cobalt in High-Entropy Alloys AlxFeNiCoCuCr. 348, 337–348.
Ng C., Guo S., Luan J., Shi S., and Liu C.T. (2012), Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy. Intermetallics 31, 165–172.
Oh S.M., and Hong S.I. (2017), Microstructure and Mechanical Properties of Equiatomic CrMnCoNiCu High Entropy Alloy. Mater. Sci. Forum 909, 39–43.
Oikawa K., Qin G., Ikeshoji T., and Kainuma R. (2002), Direct evidence of magnetically induced phase separation in the fcc phase and thermodynamic calculations of phase equilibria of the Co-Cr system. Acta Mater. 50, 2223–2232.
Otto F., Dlouhý A., Pradeep K.G., Kuběnová M., Raabe D., Eggeler G., and George E.P. (2016), Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40–52.
Otto F., Yang Y., Bei H., and George E.P. (2013), Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628–2638.
Paul A. (2017), Comments on “Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys” by K.Y. Tsai, M.H. Tsai and J.W. Yeh, Acta Materialia 61 (2013) 4887–4897. Scr. Mater. 135, 153–157.
Pearson W.., Christian J.., and Hume-Rothery W. (1951), New Sigma-Phases in Binary Alloys of the Transition Elements of the First Long Period. Nature 167, 110.
Pickering E.J., Muñoz-Moreno R., Stone H.J., and Jones N.G. (2016), Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106–109.
Poletti M.G., and Battezzati L. (2014), Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 75, 297–306.
Rajkumar V.B., and Hari Kumar K.C. (2014), Thermodynamic modeling of the Fe–Mo system coupled with experiments and ab initio calculations. J. Alloys Compd. 611, 303–312.
Ranganathan S. (2003), Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 85, 1404–1406.
Saunders N., and Miodownik A.P. (1998), CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide.
Seetharaman S., Mukai K., and Sichen D. (2005), Viscosities of slags - An overview. Steel Res. Int. 76, 267–278.
Senkov O.N., Miller J.D., Miracle D.B., and Woodward C. (2015), Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529.
Senkov O.N., Senkova S. V., and Woodward C. (2014), Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214–228.
Senkov O.N., Senkova S. V., Woodward C., and Miracle D.B. (2013), Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis. Acta Mater. 61, 1545–1557.
Sholl D.S., and Steckel J.A. (2009), Density Functional Theory. John Wiley & Sons, Inc. Hoboken, NJ.
Singh A.K., Kumar N., Dwivedi A., and Subramaniam A. (2014), A geometrical parameter for the formation of disordered solid solutions in multi-component alloys. Intermetallics 53, 112–119.
Smith C.S. (1963), Four Outstanding Researchers in Metallurgical History. American Society for Testing and Materials, Baltimore MD.
Sonkusare R., Divya Janani P., Gurao N.P., Sarkar S., Sen S., Pradeep K.G., and Biswas K. (2018), Phase equilibria in equiatomic CoCuFeMnNi high entropy alloy. Mater. Chem. Phys. 210, 269–278.
Stepanov N.D., Shaysultanov D.G., Salishchev G.A., Tikhonovsky M.A., Oleynik E.E., Tortika A.S., and Senkov O.N. (2015), Effect of v content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. J. Alloys Compd. 628, 170–185.
Stepanov N.D., Yurchenko N.Y., Panina E.S., Tikhonovsky M.A., and Zherebtsov S. V. (2017), Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater. Lett. 188, 162–164.
Sundman B., Jansson B., and Andersson J.O. (1985), The Thermo-Calc databank system. Calphad 9, 153–190.
Takeuchi A., Amiya K., Wada T., Yubuta K., Zhang W., and Makino A. (2013), Entropies in alloy design for high-entropy and bulk glassy alloys. Entropy 15, 3810–3821.
Tang Z., Senkov O.N., Parish C.M., Zhang C., Zhang F., Santodonato L.J., Wang G., Zhao G., Yang F., and Liaw P.K. (2015), Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater. Sci. Eng. A 647, 229–240.
Tsai K.Y., Tsai M.H., and Yeh J.W. (2013), Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 61, 4887–4897.
Tsai M.H., Chang K.C., Li J.H., Tsai R.C., and Cheng A.H. (2016), A second criterion for sigma phase formation in high-entropy alloys. Mater. Res. Lett. 4, 90–95.
Tsai M.H., Li J.H., Fan A.C., and Tsai P.H. (2017), Incorrect predictions of simple solid solution high entropy alloys: Cause and possible solution. Scr. Mater. 127, 6–9.
Tsai M.H., Tsai K.Y., Tsai C.W., Lee C., Juan C.C., and Yeh J.W. (2013), Criterion for sigma phase formation in Cr- and V-Containing high-entropy alloys. Mater. Res. Lett. 1, 207–212.
Vaidya M., Pradeep K.G., Murty B.S., Wilde G., and Divinski S.V. (2018), Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211–224.
Vaidya M., Pradeep K.G., Murty B.S., Wilde G., and Divinski S. V. (2017), Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Sci. Rep. 7, 1–11.
Vaidya M., Trubel S., Murty B.S., Wilde G., and Divinski S. V. (2016), Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 688, 994–1001.
van Laar J.J. (1908), Melting or solidification curves in binary system. Z. Phys. Chem. 63, 216.
Verma V., Tripathi A., and Kulkarni K.N. (2017), On Interdiffusion in FeNiCoCrMn High Entropy Alloy. J. Phase Equilibria Diffus. 38, 445–456.
Villars P., and Cenzual K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (on DVD), Release 2018/19, ASM International®, Materials Park, Ohio, USA -1-.
Wachtel E., and Bartelt C. (1964), Z. Metallkd. 55, 29–36
Wang Z., Huang Y., Yang Y., Wang J., and Liu C.T. (2015), Atomic-size effect and solid solubility of multicomponent alloys. Scr. Mater. 94, 28–31.
Wertz K.N., Miller J.D., and Senkov O.N. (2018), Toward multi-principal component alloy discovery: Assessment of CALPHAD thermodynamic databases for prediction of novel ternary alloy systems. J. Mater. Res. 33, 3204–3217.
Westbrook J.H., and Fleischer R.L. (2000), Intermetallic compounds-Crystal structures of intermetallic compounds. Wiley. West Sussex
Wu Z., Bei H., Otto F., Pharr G.M., and George E.P. (2014), Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131–140.
Yang X., and Zhang Y. (2012), Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233–238.
Ye Y.F., Wang Q., Lu J., Liu C.T., and Yang Y. (2015), Design of high entropy alloys: A single-parameter thermodynamic rule. Scr. Mater. 104, 53–55.
Yeh J.W. (2006), Recent progress in high-entropy alloys. Ann. Chim. Sci. des Mater. 31, 633–648.
Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., and Chang S.Y. (2004), Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 6, 299–303.
Zhang C., Zhang F., Chen S., and Cao W. (2012), Computational thermodynamics aided high-entropy alloy design. JOM. 64, 839–845.
Zhang F., Zhang C., Chen S.L., Zhu J., Cao W.S., and Kattner U.R. (2014), An understanding of high entropy alloys from phase diagram calculations. Calphad Comput. Coupling Phase Diagrams Thermochem. 45, 1–10.
Zhang Y., Zhou Y.J., Lin J.P., Chen G.L., and Liaw P.K. (2008), Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534–538.
Zhao J.-C. ed. (2011), Methods for Phase Diagram Determination. Elsevier
Zwicker U. (1951), Z. Metallkd. 42, 277–278.