簡易檢索 / 詳目顯示

研究生: 李重義
Chong-Yi Lee
論文名稱: 以有機金屬化學氣相磊晶法成長及研製1.3微米磷砷化銦應力型多重量子井雷射二極體
Studies of 1.3 µm InAsP/InP Strained Multiple Quantum Well Laser Diodes Grown by MOCVD
指導教授: 吳孟奇
Meng-Chyi Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 英文
論文頁數: 61
中文關鍵詞: 磷砷化銦雷射二極體應力型多重量子井有機金屬化學氣相磊晶
外文關鍵詞: InAsP, Laser Diode, Strained Multiple Quantum Wells, MOCVD
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中我們將探討利用有機金屬化學氣相磊晶技術成長及研製波長1.3微米磷砷化銦/磷化銦(InAsP/InP)應變多重量子井及磷砷化銦/磷化銦鎵(InAsP/InGaP)應變補償多重量子井雷射二極體之方法及雷射特性。
    為了獲得高品質的InAsP/InP應變多重量子井結構,我們首先針對成長溫度在InAsP/InP應變多重量子井及應變單一量子井結構品質及光學特性上的影響進行研究。結果發現當成長溫度分別為580°C及650°C,而三氫化砷(AsH3)在五族中所佔流量百分比分別為0.50%及1.48%時,可得到固態組成相同的InAs0.3P0.7磊晶層。在低溫光激光譜的量測觀察中,不管是580°C或650°C時所成長之不同厚度量子井的光譜能量都和理論計算相互吻合。另外,在穿透式電子顯微鏡分析中顯示InAsP/InP應變單一量子井結構在580°C成長時,沒有差排產生而且介面非常陡峭和均勻,光激光譜量測之半高寬也非常窄。即使對有很大淨應力存在的應變多重量子井結構而言,在580°C成長過程中仍能保持結構的完整性。但是在650°C成長時卻不然。此結果指出低溫成長InAsP/InP應變多重量子井結構將可獲得較佳的磊晶品質。

    我們也探討了InAsP/InP應變單一量子井、應變單一量子井堆及應變多重量子井結構在變溫情況下的光激光譜特性,對InAsP的光學性質作更進一步的瞭解。在低溫量測的觀察中,砷固態組成小於0.36的高品質InAsP應變單一量子井之光激光譜半高寬僅有9.9meV,非常小。而當溫度升高時,較薄量子井中因電子電洞對復合而產生光子的效應減少,導致光激光譜提前消失的現象,我們可從InAsP應變單一量子井堆的變溫光激光譜量測中觀察到。除此之外,InAsP/InP應變單一量子井、應變單一量子井堆及應變多重量子井結構在變溫情況下的光激光譜能量也被詳細的加以分析。

    有了上面的結論,我們成功的利用有機金屬化學氣相磊晶技術在580°C下成長波長1.3微米InAsP/InP分別侷限異質應變多重量子井結構並製作出雷射二極體。InAsP/InP應變多重量子井結構在580°C成長時,雖然有很大的淨應力存在,但是於成長過程中結構仍能保持完整。利用此InAsP/InP應變多重量子井結構當主動層所製作出的寬面及脊狀波導雷射二極體,皆能獲得預期之雷射光譜。此結構雷射二極體的其他實驗數據亦在本論文中有詳加描述。

    由於低溫下進行磊晶成長易產生缺陷而影響雷射特性,所以我們利用快速加熱退火技術試圖改善在低溫下磊晶成長InAsP/InP應力型多重量子井結構所製作出之雷射二極體特性。從經快速加熱退火後之應變單一量子井堆的光激光譜量測中發現,較適合的加熱溫度為700°C。因為經700°C處理後之應變單一量子井結構的光激光譜在半高寬保持不變的情況下,強度平均增加了1.56倍。而經此700°C快速加熱退火技術所製作出之雷射二極體特性也確實獲得良好的改善。

    另外,我們採用了InGaP張力應變量子位障能補償InAsP縮應變量子井的特性來研製波長1.3微米波長InAsP/InGaP應變補償多重量子井雷射二極體。在雙晶X光繞射分析中顯示,採用此互補特性的磊晶結構之介面非常陡峭和均勻。此結果表示InAsP/InGaP應變補償多重量子井結構由於有InGaP張力應變量子位障的補償,將可獲得更佳的磊晶品質。而此InAsP/InGaP應變補償多重量子井結構在光激光譜的分析中,也觀察到一個光激光譜受壓電效應而改變波長的奇特現象。經由此應變補償結構所製作出的寬面雷射二極體的臨限電流比未補償的應變結構寬面雷射二極體減少了3倍。最後,我們也成功的完成了InAsP/ InGaP應變補償多重量子井脊狀波導雷射二極體之研製,臨限電流由未補償的78.8mA降低至33.8mA。典型的雷射波長在44mA的電流情況下為1.307微米。


    In this dissertation, we have described the growth and characteristics for the 1.3 µm InAsP/InP strained multiple quantum well (SMQW) and InAsP/InGaP strain-compensated multiple quantum well (SCMQW) laser diodes (LDs) grown by metalorganic chemical vapor deposition (MOCVD).
    The influence of growth temperature on the luminescent and structural properties of InAsyP1-y/InP SMQWs and strained single quantum wells (SSQWs) was first studied toward achieving a high-quality crystalline InAsP/InP SMQW structure. A AsH3/(AsH3+PH3) gas flow ratio of 0.50 and 1.48 % at 580 and 650 °C growth temperatures, respectively, will result in an InAsP layer with y = 0.3 solid composition. The experimental photoluminescence (PL) emission energies at 10 K with different well thicknesses for the InAsyP1-y/InP SSQWs grown at 580 and 650 °C are in well agreement with the trend of the calculated curves. The transmission electron microscope (TEM) lattice image of an InAsP/InP SSQW grown at 580 °C on the order of two monolayers has been demonstrated for the first time. The InAsP/InP SSQW structure grown at 580 °C appears to be extremely abrupt, uniform, free of misfit dislocations, and narrow PL linewidth. Besides, the growth of InAsP/InP SMQWs at 580 °C maintains its structural integrity throughout the deposition sequence with smooth interface and well-defined periodicity. However, the InAsP/InP SSQWs or SMQWs exhibit an adverse property at 650 °C growth temperature. Thus, the lower growth temperature is necessary for the InAsP/InP SMQW growth by MOCVD.

    We next explored the temperature dependence of PL from InAsP/InP SSQW, SSQW stack and SMQW structures for understanding their optical properties. The high-quality crystalline InAsyP1-y(72Å)/InP SSQW structure with y £ 0.36 exhibits a 9.9 meV full width at half maximum (FWHM) of 10 K PL spectra. The peaks in the PL spectra for SSQW stack structure with a well thickness of 8, 14, and 35 Å vanish above 100, 150, and 296 K, respectively, presumably due to the decrease of photons yielded by electron-hole recombination in thinner quantum well regions when increasing temperature. In addition, the variations of the PL peak energy and FWHM in all the InAsP/InP SSQW, SSQW stack, and SMQW structures are described in detail.

    Based on the above results, 1.3 µm InAsP/InP SMQW LDs with separate confinement heterostructure grown at 580 °C by MOCVD were fabricated. Although the InAsP/InP SMQWs grown at 580 °C maintain its structural integrity throughout the deposition sequence, the slightly broader PL half width for InAsP/InP SMQW structure is attributed to the dislocations resulted from a large net strain. Laser emission can be achieved by using the InAsP/InP SMQWs and the lasing wavelength is in a good agreement with our designed structure. The experimental data of broad-area and ridge-waveguide LDs are described in detail.

    In order to improve the characteristics of InAsP/InP SMQW LDs, the effect of rapid thermal annealing (RTA) on the performance of LDs grown by MOCVD was studied. From the PL measurements, the optimal RTA temperature for the InAsP/InP SSQW stack is 700 °C. The 700-°C annealed SSQW stack has a stronger PL peak intensity, no spectrum broadening and little peak shift, indicating that the interdiffusion of group-V elements can be much alleviated. The threshold current and slope efficiency of the 700-°C RTA LDs can be reduced significantly as compared to the as-grown LDs.

    1.3 µm InAsP/InP/InGaP strain-compensated multiquantum well (SCMQW) LDs were fabricated by introducing InGaP tensile strained layer as barriers to counteract the compressive strain induced by the InAsP layer. Sharp satellite peaks with narrow width in double-crystal x-ray diffraction (DC-XRD) for the InAsP/InP/InGaP SCMQW structure are observed, indicating that good epitaxial-layer quality can be obtained through the use of strain-compensation coupled by InGaP barrier layers. A redshift of the PL peak position with increasing InGaP barrier thickness above 6 nm is observed for the first time in (100) oriented strained layers, is probably attributed to redistribution across the samples of the huge built-in electric field induced by the piezoelectric effect. The threshold current density of InAsP/InP/InGaP SCMQW LDs decreases by a factor of 3 through the employ of tensile-strained InGaP barrier layer and lasing wavelength is in a good agreement with our design structure.

    Additionally, we report the effects of InGaP barrier thickness on the performance of 1.3 µm InAsP/InP/InGaP SCMQW-RWG LDs. The threshold current decreased from 78.8 to 33.8 mA through the employ of tensile-strained InGaP barrier layer of 20 Å and lasing emission wavelength is 1.307 µm under 44 mA. These results indicate that adequate thickness of tensile-strained InGaP barrier is must be employed to compensate the compressive strain of InAsP system for optoelectronic devices.

    [1]Special issue on optical amplifiers, J. Lightwave Technol., vol. 9, p. 145, 1991.
    [2]E. Desurvire, “Lightwave communications: the fifth generation”, Scientific American, vol. 266, p. 96, 1992.
    [3]M. Okayasu, M. Fukuda, T. Takeshita, and S. Uehara, “Stable operation (over 5000h) of high-power 0.98 µm InGaAs-GaAs strained quantum well ridge waveguide lasers for pumping Er3+-doped fiber amplifiers”, IEEE Photon. Technol. Lett., vol. 2, p. 689, 1990.
    [4]H. Asano, S. Takano, M. Kawaradani, M. Kitamura, and I. Mito, “1.48 µm high-power InGaAs/InGaAsP MQW LDs for Er-doped fiber emulsifiers”, IEEE Photon. Technol. Lett., vol. 3, p. 415, 1991.
    [5]A. R. Adams, “Band-structure engineering for low-threshold high-efficiency semiconductor lasers”, Electron. Lett., vol. 22, p. 249, 1986.
    [6]E. Yablonovitch and E. O. Kane, “Band structure engineering of semiconductor lasers for optical communications”, J. Lightwave Technol., vol. 6, p. 1292, 1988.
    [7]E. Yablonovitch and E. O. Kane, “Reduction of lasing threshold current density by the lowering of valance band effective mass”, J. Lightwave Technol., vol. 4, p. 504, 1986.
    [8]T. Fukushima, A. Kasukawa, M. Iwase, T. Namegaua, and M. Shibata, “Small turn-on delay time in 1.3 µm InAsP/InP strained double quantum-well lasers with very-low threshold current”, IEEE Photon. Technol. Lett., vol. 5, p. 117, 1993.
    [9]H. Q. Hou, A. N. Cheng, H. H. Wieder, W. S. C. Chang, and C. W. Tu, “Electroabsorption of InAsP/InP strained multiple quantum wells for 1.3 µm waveguide modulators”, Appl. Phys. Lett., vol. 63, p. 1833, 1993.
    [10]J. F. Carlin, A. V. Syrbu, C. A. Berseth, J. Behrend, A. Rudra, and E. Kapon, “InAsP quantum wells for low threshold and high efficiency multi-quantum well laser diodes emitting at 1.55 µm”, IEEE 9th International Conference on Indium Phosphide and Related Materials, Cape Cod, MA, 1997, p. 563.
    [11]D. S. Kim, S. R. Forrest, G. H. Olsen, M. J. Lange, R. U. Martinelli, and N. J. Di Giuseppe, “Avalanche gain in InAsyP1-y (0.1>y>0.3) photodetectors”, IEEE Photon. Technol. Lett., vol. 7, p. 911, 1995.
    [12]R. E. Cavicchi, D. V. Lang, D. Gershoni, A. M. Sergent, J. M. Vandenberg, S. N. G. Chu, and M. B. Panish, “Admittance spectroscopy measurement of band offsets in strained layers of InxGa1-xAs grown on InP”, Appl. Phys. Lett., vol. 54, p. 739, 1989.
    [13]E. A. Montie, P. J. A. Thijs, and G. W. 't Hooft, “Photoluminescence excitation spectroscopy of GaxIn1-xAsyP1-y/InP quantum wells”, Appl. Phys. Lett., vol. 53, p. 1611, 1988.
    [14]C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 µm AlxGayIn1-x-yAs/InP strained-layer quantum-well lasers for subscriber loop applications”, IEEE J. Quantum Electron., vol. 30, p. 511, 1994.
    [15]C. Monier, M. F. Vilela, I. Serdiukova, and A. Freundlich, “Band discontinuity in strained In(As,P)/InP heterostructures”, Appl. Phys. Lett., vol. 72, p. 1587, 1998.
    [16]M. Yamada, T. Anan, K. Tokutome, and S. Sugou, “High-temperature characteristics of 1.3-µm InAsP-InAlGaAs ridge waveguide lasers”, IEEE Photon. Technol. Lett., vol. 11, p. 164, 1999.
    [17]W. P. Hong, R. Bhat, J. Hayes, F. DeRosa, M. Leadbeater, and M. Keza, “Novel strained InP/InAsxP1-x quantum-well modulation-doped heterostructures”, Appl. Phys. Lett., vol. 60, p. 109, 1992.
    [18]H. Q. Hou, C. W. Tu, and S. N. G. Chu, “Gas-source molecular beam epitaxy growth of highly strained device quality InAsP/InP”, Appl. Phys. Lett., vol. 58, p. 2954, 1991.
    [19]Y. Imajo, A. Kasukawa, T. Namegawa, and T. Kikuta, “1.3 µm InAsyP1-y/InP strained-layer quantum well laser diodes grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol. 61, p. 2506, 1992.
    [20]A. Freundlich, A. H. Bensaoula, and A. Bensaoula, “Growth of InAs/InP and InAsP/InP heterostructures by chemical beam epitaxy”, J. Cryst. Growth, vol. 127, p. 246, 1993.
    [21]A. Kasukawa, T. Namegaya, T. Fukushima, N. Iwai, and T. Kikuta, “1.3 µm InAsyP1-y-InP strained-layer quantum-well laser diodes grown by metalorganic chemical vapor deposition”, IEEE J. Quantum Electron., vol. 29, p. 1528, 1993.
    [22]G. B. Stringfellow, “Thermodynamic aspects of organometallic vapor phase epitaxy”, J. Cryst. Growth, vol. 62, p. 225, 1983.
    [23]W. T. Tsang, “Growth of bright (300K) luminescence InAsxP1-x (l=1.7-2.1 µ) on InP substrates by molecular beam epitaxy”, J. Appl. Phys., vol. 55, p. 2901, 1984.
    [24]H. Seki and A. Koukitu, “Thermodynamic analysis of metalorganic vapor phase epitaxy of III-V alloy semiconductors”, J. Cryst. Growth, vol. 74, p. 172, 1986.
    [25]M. Ikeda, K. Nakane, Y. Mori, K. Kaneko, and N. Watanabe, “MOCVD growth of AlGaInP at atmospheric pressure using triethylmetals and phosphine”, J. Cryst. Growth, vol. 77, p. 380, 1986.
    [26]A. Valster, C. T. H. F. Liedenbaum, M. N. Finke, A. L. G. Severens, M. J. B. Boermans, D. E. W. Vandenhoudt, and C. W. T. Bulle-Lieuwma, “High quality AlxGa1-x-yInyP alloys grown by MOVPE on (311)B GaAs substrates”, J. Cryst. Growth, vol. 107, p. 403, 1991.
    [27]M. J. Jou, J. F. Lin, C. M. Chang, C. H. Lin, M. C. Wu, and B. J. Lee, “Metalorganic vapor phase epitaxy growth and characterization of (AlxGa1-x)0.5In0.5P/Ga0.5In0.5P (x=0.4, 0.7 and 1.0) quantum wells on 15°-off-(100) GaAs substrates at high growth rate”, Jpn. J. Appl. Phys., vol. 32, p. 4460, 1993.
    [28]R. P. Schneider, Jr. and B. W. Wessels, “Monolayer abruptness in highly strained InAsxP1-x/InP quantum well interfaces”, Appl. Phys. Lett., vol. 54, p. 1142, 1989.
    [29]G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les editions de Physigne, Paris, 1988).
    [30]J. Y. Marzin, J. M. Gerard, P. Voisin, and J. A. Brum, “Optical studies of strained III-V heterolayers”, Semiconductors and Semimetals, edited by T. P. Pearsall (Academic, New York, 1990), vol. 32, p. 55.
    [31]Semiconductors: Physics of Group IV Elements and III-V Compounds, New Series, edited by O. Madelung (Springer, Berlin, 1982), vol. 17.
    [32]Semiconductors: Group IV Elements and III-V Compounds, 2nd edition, edited by O. Madelung (Springer, Berlin, 1996).
    [33]R. People and S. K. Sputz, “Band nonparabolicities in lattice-mismatch-strained bulk semiconductor layers”, Phys. Rev. B, vol. 41, p. 8431, 1990.
    [34]P. F. Fewster, “X-ray diffraction from multiple quantum well structures”, Philips J. Res., vol. 41, p. 268, 1986.
    [35]G. Partriarche, A. Ougazzaden, and F. Glas, “Inhibition of thickness variations during growth of InAsP/InGaP and InAsP/InGaAsP multiquantum wells with high compensated strains”, Appl. Phys. Lett., vol. 69, p. 2279, 1996.
    [36]R. M. Kolbas, N. G. Anderson, W. D. Laidig, Y. Sin, Y. C. Lo, K. Y. Hsieh, Y. J. Yang, “Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers”, IEEE J. Quantum Electron., vol. 24, p. 1605, 1988.
    [37]K. F. Huang, K. Tai, J. L. Jewell, R. J. Fischer, S. L. McCall, A. Y. Cho, “Room-temperature pseudomorphic InxGa1-xAs/GaAs quantum well surface-emitting lasers at 0.94-1.0 µm wavelengths”, Appl. Phys. Lett., vol. 54, p. 2192, 1989.
    [38]J. J. Rosenber, M. Benlamri, P. D. Kirchner, J. M. Woodall, G. D. Pettit, “An In0.15Ga0.85As/GaAs pseudomorphic single quantum well HEMT”, IEEE Electron Device Lett., vol. 6, p. 491, 1985.
    [39]P. M. Enquist, L. P. Ramberg, F. E. Najjar, W. J. Schaff, K. L. Kavanagh, G. W. Wicks, L. F. Eastman, “Use of pseudomorphic GaInAs in heterojunction bipolar transistors”, J. Cryst. Growth, vol. 81, p.378, 1987.
    [40]R. P. Schneider, Jr., B. W. Wessels, “Photoluminescence excitation spectroscopy of InAs0.67P0.33/InP strained single quantum wells”, J. Electron. Mater., vol. 20, p. 1117, 1991.
    [41]M. Yamamoto, N. Yamamoto, J. Nakano, “MOVPE growth of strained InAsP/InGaAsP quantum-well structures for low-threshold 1.3 µm lasers”, IEEE J. Quantum Electron., vol. 30, p. 554, 1994.
    [42]K. Yamashita, T. Kita, H. Nakayama, T. Nishino, “Direct optical transitions in indirect-gap (Al0.5Ga0.5)0.51In0.49P by atomic ordering”, Phys. Rev. B, vol. 53, p. 15713, 1995.
    [43]F. A. J. M. Drissen, G. J. Bauhuis, S. M. Olsthoorn, L. J. Giling, “Effects of confined donor states on the optical and transport properties of ordered GaInP alloys”, Phys. Rev. B, vol. 48, p. 7889, 1993.
    [44]M. Gurioli, A. Vinattieri, M. Coloccci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, S. Franchi, “Temperature dependence of the radiative and nonradiative recombination time in GaAs/AlxGa1-xAs quantum-well structures”, Phys. Rev. B, vol. 44, p. 3115, 1991.
    [45]G. Bacher, H. Schweizer, J. Kovac, A. Forchel, H. Nickel, W. Schlapp, R. Losch, “Influence of barrier height on carrier dynamics in strained InxGa1-xAs/GaAs quantum wells”, Phys. Rev. B, vol. 43, p. 9312, 1991.
    [46]P. Michler, A. Hangleiter, M. Moser, M. Geiger, F. Scholtz, “Influence of barrier height on carrier lifetime in Ga1-yInyP/(AlxGa1-x)1-yInyP single quantum wells”, Phys. Rev. B, vol. 46, p. 7280, 1992.
    [47]Y. Ishitani, S. Minagawa, H. Hamada, T. Tanaka, “Temperature dependence of photoluminescence intensity from AlGaInP/GaInP-quantum well structures”, J. Appl. Phys., vol. 82, p. 1336, 1997.
    [48]D. Moroni, J. P. Andre, E. P. Menu, Ph. Gentric, J. N. Patillon, “Photoluminescence investigation of InGaAs-InP quantum wells”, J. Appl. Phys., vol. 62, p. 2003, 1987.
    [49]Y. G. Zhao, R. A. Masut, J. L. Brebner, C. A. Tran, J. T. Graham, “Temperature dependence of photoluminescence in InAsP/InP strained multiple quantum wells”, J. Appl. Phys., vol. 76, p. 5921, 1994.
    [50]W. Z. Shen, Y. Chang, S. C. Shen, W. G. Tang, Y. Zhao, A. Z. Li, “Temperature-dependent exciton behavior in quaternary GaInAsSb/AlGaAsSb strained single quantum wells”, J. Appl. Phys., vol. 79, p. 2139, 1996.
    [51]Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physica, vol. 34, p. 149, 1967.
    [52]S. L. Zuo, W. G. Bi, C. W. Tu, E. T. Yu, “A scanning tunneling microscopy study of atomic-scale clustering in InAsP/InP heterostructures”, Appl. Phys. Lett., vol. 72, p. 2135, 1998.
    [53]T. K. Woodward, T-H. Chiu, Theodore Sizer, II, “Multiple quantum well light modulators for the 1.06 µm range on InP substrates: InxGa1-xAsyP1-y/InP, InAsyP1-y/InP, and coherently strained InAsyP1-y/InxGa1-xP”, Appl. Phys. Lett., vol. 60, p. 2846, 1992.
    [54]X. S. Jiang and P. K. L. Yu, “Strain compensated InAsP/InP/InGaP multiple quantum well for 1.5 mm wavelength”, Appl. Phys. Lett., vol. 65, p. 2536, 1994.
    [55]C. Y. Lee, H. P. Shiao, M. C. Wu, and C. W. Chen, “Influence of growth temperature of InAsP/InP strained multiple quantum wells grown by metalorganic chemical vapor deposition”, J. Vac. Sci. Technol. B, vol.17, p. 2530, 1999.
    [56]J. Van. Roey, J van der Donk, and P. E. Lagasse, “Beam-propagation method: analysis and assessment”, J. Opt. Soc. Am., vol. 71, p. 803, 1981.
    [57]M. Rosenzweig, M. Mohrie, H. Duser, and H. Venghaus, “Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers”, IEEE J. Quantum Electron., vol. 27, p. 1804, 1991.
    [58]J. S. Osinski, Y. Zou, P. Grodzinski, M. Mathur, and P. Dapkus, “Low-threshold-current-density 1.5 µm laser using compressively strained InGaAsP quantum wells”, IEEE Photon. Technol. Lett., vol. 4, p. 10, 1992.
    [59]C. E. Zah, R. Bhat, F. J. Favire, S. G. Menocal, N. C. Andreadakis, K. W. Cheung, D. M. D. Hwang, M. A. Koza, and T. P. Lee, “Low-threshold 1.5 µm compressive-strained multiple- and single-quantum-well lasers”, IEEE J. Quantum Electron., vol. 27, p. 1440, 1991.
    [60]C. Y. Lee, M. C. Wu, H. P. Shiao, T. T. Shi, and W. J. Ho, “MOCVD growth of strained multiple quantum well structure for 1.3 µm InAsP/InP laser diodes”, Solid State Electron., vol. 43, p. 2141, 1999.
    [61]N. Yamada, G. Roos, and Jr. J. S. Harris, “Threshold reduction in strained InGaAs single quantum well lasers by rapid thremal annealing”, Appl. Phys. Lett., vol. 59, p. 1040, 1991.
    [62]M. Jalonen, M. Toivonen, P. Savolainen, J. Kongas, and M. Ressa, “Effects of rapid thermal annealing on GaInP/AlGaInP lasers grown by all-solid-source molecular beam epitaxy”, Appl. Phys. Lett., vol. 71, p. 479, 1997.
    [63]A. Ougazzaden, A. Mircea, and C. Kazmierski, “High temperature characteristic T0 and low threshold current density of 1.3 mm InAsP/InGaP/InP compensated strain multiquantum well structure lasers”, Electron. Lett., vol. 31, p. 803, 1995.
    [64]P. W. M. Blom, J. E. M. Haverkort, and J. H. Wolter, “Optimization of barrier thickness for efficient carrier capture in graded-index and separate-confinement multiple quantum well lasers”, Appl. Phys. Lett., vol. 58, p. 2767, 1991.
    [65]J. J. M. Binsma, P. J. A. Thijs, T. van Dongen, M. J. H. Sander-Jochem, and R. W. M. Slootweg, “Effect of barrier width on the performance of compressively strained InGaAs/InGaAsP MQW lasers”, IEEE 6th International Conference on Indium Phosphide and Related Materials, Santa Barbara, USA, 1994, p.10.
    [66]N. Yokouchi, N. Yamanaka, N. Iwai, T. Matsuda, and A. Kasukawa, “InAsP/InGaP all ternary strain-compensated multiple quantum wells and its application to long wavelength lasers”, IEEE 7th International Conference on Indium Phosphide and Related Materials, Sapporo, Japan, 1995, p.57.
    [67]C. Mailhiot and D. L. Smith, “Electronic structure of [001]- and [111]-growth-axis semiconductor superlattices”, Phys. Rev. B, vol. 35, p. 1242, 1987.
    [68]M. Leroux, N. Grandjean, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Barrier-width dependence of group-III nitrides quantum-well transition energies”, Phys. Rev. B, vol. 60, p. 1496, 1991.
    [69]J. C. Dries, M. R. Gokhale, H. Uenohara, and S. R. Forrest, “Strain-compensated InGa(As)P-InAsP active regions for 1.3 mm wavelength lasers”, IEEE Photonics Technol. Lett., vol. 10, p. 42, 1998.
    [70]A. Kasukawa, N. Yokouchi, N. Yamanaka, and N. Iwai, “Very low threshold current density 1.3 mm InAsP/InP/InGaP/InP/GaInAsP strain-compensated multiple quantum well lasers”, Electron. Lett., vol. 31, p. 1749, 1995.
    [71]H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, and A. Kasukawa, “Submilliampere threshold current in 1.3 mm InAsP n-doped modulation doped MQW lasers grown by gas source molecular beam epitaxy”, Electron. Lett., vol. 34, p. 1591, 1998.
    [72]T. Toda and Y. Nakano, “Room temperature operation of 1.5 mm InAsP/InP strained quantum wire DFB lasers fabricated by mass transport method”, IEEE 11th International Conference on Indium Phosphide and Related Materials, Davos, Switzerland, 1999, p. 17.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE