研究生: |
黃郁芬 Huang, Yu-Fen |
---|---|
論文名稱: |
酵母菌異質表現液泡焦磷酸水解酶之蛋白調控機制 Protein regulation of vacuolar H+-pyrophosphatase heterologously expressed in yeast |
指導教授: |
潘榮隆
Pan, Rong-Long |
口試委員: |
張晃猷
劉姿吟 潘羿娟 黃蘊慈 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 焦磷酸水解酶 、磷酸化作用 |
外文關鍵詞: | H+-pyrophosphatase, phosphorylation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質子傳送焦磷酸水解酶是一能維持細胞質內pH恆定的獨特酵素,並藉由水解焦磷酸建立跨生物膜的質子梯度。磷酸化作用隸屬於蛋白質轉譯後修飾的一種,在調控機制中扮演重要的角色。在現階段酵母菌異質體表現綠豆焦磷酸水解酶的研究中,利用Pro-Q 鑽石染漬法發現,焦磷酸水解酶具有磷酸化作用;利用質譜分析法,發現絲胺酸45為磷酸化的位置。除此之外,發現利用酪蛋白激酶2抑制劑,能抑制絲胺酸45的磷酸化作用;第二型蛋白磷酸酶能抑制焦磷酸水解酶的磷酸化作用。綜觀以上結果,提供新的證據顯示酪蛋白激酶2及第二型蛋白磷酸酶,參與調控酵母菌異質表現焦磷酸水解酶磷酸化與去磷酸化作用。
H+-translocating pyrophosphatase (H+-PPases) is a unique enzyme implicated in the cellular pH homeostasis that develops an electrochemical H+ gradient across the membrane through pyrophosphate (PPi) hydrolysis. Phosphorylation is one of the posttranslational modifications (PTMs) of proteins and is considered a regulatory mechanism. In this study, the possible phosphorylation of the Vigna radiata H+-PPases (VrH+-PPases) isolated from the yeast heterologous expression system was revealed for the first time by using the Pro-Q Diamond staining. Furthermore, a phosphorylation site was identified at Ser45 of VrH+-PPases through mass spectroscopy. In addition, the application of casein kinase 2 (CK2) inhibitors resulted in the inhibition of phosphorylation of VrH+-PPases in yeast. Phosphorylation at Ser45 also enhanced the ion effects on VrH+-PPase. On the contrary, the type 2C protein phosphatase (PP2C) was able to dephosphorylate the VrH+-PPase obtained from heterologously expressing yeast. Our study provides new evidence for possible role of CK2 and PP2C in the kinase/phosphatase regulation of VrH+-PPases.
Abrahams, J., Leslie, A., Lutter, R., and Walker, J. (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628
Alzamora, R., Thali, R. F., Gong, F., Smolak, C., Li, H., Baty, C. J., Bertrand, C. A., Auchli, Y., Brunisholz, R. A., Neumann, D., Hallows, K. R., and Pastor-Soler, N. M. (2010) PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J. Biol. Chem. 28, 24676–24685
Baltcheffsky, M., Schultz, A., Baltcheffsky, H. (1999) H+-pumping inorganic pyrophosphatase: a tightly membrane-bound family. FEBS Lett. 452, 121–127
Bond, A. E., Row, P. E., and Dudley, E. (2011) Post-translation modification of proteins; methodologies and applications in plant sciences. Phytochemistry 72, 975–996
Chitteti, B. R., and Peng, Z. (2007) Proteome and phosphoproteome dynamic change during cell dedifferentiation in Arabidopsis. Proteomics 7, 3509–3526
Cuadrado, A., and Nebreda, A. R. (2010) Mechanisms and functions of p38 MAPK signaling. Biochem. J. 429, 403–417
Drozdowicz, Y. M., and Rea, P. A. (2001) Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci. 6, 206–211
Endler A., Reiland S., Gerrits B., Schmidt U. G., Baginsky S., and Martinoia E. (2009) In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach. Proteomics 9, 310–321
Ferjani, A., Segami, S., Asaoka, M., and Maeshima, M. (2014) Regulation of PPi levels through the vacuolar membrane H+-pyrophosphatase. Prog. Bot. 75, 145–165
Gamble, J. L. (1957) Potassium binding and oxidative phosphorylation in mitochondria and mitochondrial fragments. J. Biol. Chem. 228, 955–971
Glancy, B., Willis, W. T., Chess, D. J., and Balaban, R. S. (2013) Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry 52, 2793–2809
Gaxiola, R. A., Li, J., Undurraga, S., Dang, L. M., Allen, G. J., Alper, S. L., and Fink, G. R. (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc. Natl. Acad. Sci. USA 98, 11444–11449
Hsiao, Y. Y., Van, R. C., Hung, S. H., Lin, H. H., and Pan, R. L. (2004) Roles of histidine residues in plant vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1608, 190–199
Hunter, T. (2007) The age of crosstalk: Phosphorylation, ubiquitination, and beyond. Mol. Cell 28, 730–738
Jensen, O. N. (2006) Interpreting the protein language using proteomics. Nat. Rev. Mol. Cell Biol. 7, 391–403
Kersten, B., Agrawal, G. K., Durek, P., and Neigenfind, J. (2009) Plant phosphoproteomics: an update. Proteomics 9, 964–988
Kirsch, R. D., and Joly, E. (1998) An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res. 26, 1848–1850
Krupa, A., Anamika, and Srinivasan, N. (2006) Genome-wide comparative analyses of domain organization of repertoires of protein kinases of Arabidopsis thaliana and Oryza sativa. Gene 380, 1–13
Laemmli, U. K. (1970) Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 222, 680–685
Lecchi, S., Nelson, C. J., Allen, K. E., Swaney, D. L., Thompson, K. L., Coon, J. J., Sussman, M. R., and Slayman, C. W. (2007) Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J. Biol. Chem. 282, 35471–35481
Lee, C. H., Chen, Y. W., Huang, Y. T., Pan, Y. J., Lee, C. H., Lin, S. M., Huang, L. K., Lo, Y. Y., Huang, Y. F., Hsu, Y. D., Yen, S. C., Hwang., J. K., Pan, R. L.
(2013) Functional investigation of transmembrane helix 3 in H+-translocating pyrophosphatase. J. Membrane. Biol. 246, 959–966
Lin, S. M., Tsai, J. Y., Hsiao, C. D., Huang, Y. T., Chiu, C. L., Liu, M. H., Tung, J. Y., Liu, T. H., Pan, R. L., and Sun, Y. J. (2012) Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484, 399–404
Litchfield, D. W. (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369, 1–15
Liu, W., Xu, Z. H., Luo, D., and Xue, H. W. (2003) Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J. 36, 189–202
Liu, G. S., Chen, S., Chen, J., and Wang, X. C. (2004) Identification of the phosphorylation site of the V-ATPase subunit A in maize roots. Acta Bot. Sin. 46, 428–435
Maeshima, M. (1991) H+-translocating inorganic pyrophosphatase of plant vacuoles: inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur. J. Biochem. 196, 11–17
Maeshima, M. (2000) Vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1465, 37–51
Maeshima, M. (2001) Tonoplast transporters: organization and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 469–497
Manning, G., Plowman, G. D., Hunter, T., and Sudarsanam, S. (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 27, 514–520
Meraldi, P., Honda, R., and Nigg, E. A. (2004) Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr. Opin. Genet. Dev. 14, 29–36
Mok, J., Kim, P. M., Lam, H. Y., Piccirillo, S., Zhou, X., Jeschke, G. R., Sheridan, D. L., Parker, S. A., Desai, V., Jwa, M., Cameroni, E., Niu, H., Good, M., Remenyi, A., Ma, J. L., Sheu, Y. J., Sassi, H. E., Sopko, R., Chan, C. S., De Virgilio, C., Hollingsworth, N. M., Lim, W. A., Stern, D. F., Stillman, B., Andrews, B. J., Gerstein, M. B., Snyder, M., and Turk, B. E. (2010) Deciphering protein kinase specificity through large scale analysis of yeast phosphorylation site motifs. Sci. Signal. 3, ra12
Moreno-Romero, J., Espunya, M. C., Platara, M., Arino, J., and Martinez, M. C. (2008) A role for protein kinase CK2 in plant development: evidence obtained using a dominant-negative mutant. Plant J. 55, 118–130
Mulekar, J. J., Bu, Q., Chen, F., and Huq, E. (2012) Casein kinase 2 alpha subunits affect multiple developmental and stress-responsive pathways in Arabidopsis. Plant J. 69, 343–354
Muthukumar, S., Rajkumar, R., Karthikeyan, K., Liao, C. C., Singh, D., Akbarsha, M. A., and Archunan, G. (2014) Buffalo cervico-vaginal fluid proteomics with special reference to estrous cycle: heat shock protein (Hsp)-70 appears to be an estrus indicator. Reprod. 90, 1–8
Niittylӓ, T., Fuglsang, A. T., Palmgren, M. G., Frommer, W. B., and Schulze, W. X. (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol. Cell Proteomics 6, 171–1726
Pan, Y. J., Lee, C. H., Hsu, S. H., Huang, Y. T., Lee, C. H., Liu, T. H., Chen, Y. W., Lin, S. M., and Pan, R. L. (2011) The transmembrane domain 6 of vacuolar H+-pyrophosphatase mediates protein targeting and proton transport. Biochim. Biophys. Acta 1807, 59–67
Rudashevskaya, E. L., Ye, J., Jensen, O. N., Fuglsang, A. T., and Palmgren, M. G. (2012) Phosphosite mapping of p-type plasma membrane H+-ATPase in homologous and heterologous environments. J. Biol. Chem. 287, 4904–4913
Schulenberg, B., Robert, A., Joseph, M. B., Roderick, A. C., and Wayne, F. P. (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J. Biol. Chem. 278, 27251–27255
Sekhar, V., Reed, S. C., and McBride, A. A. (2010) Interaction of the Betapapillomavirus E2 tethering protein with mitotic chromosomes. J. Virol. 84 (1), 543-557
Serrano, A., Perez, C. J. R., Baltscheffsky, H., Baltscheffsky, M. (2004) Proton-pumping inorganic pyrophosphatases in some Archaea and other extremophilic prokaryotes. J. Bioenerg. Biomembr. 36, 127–133
Steinberg, T. H., Agnew, B. J., Gee, K. R., Leung, W. Y., Goodman, T., Sumi, T., Matsumoto, K., and Nakamura, T. (2001) Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J. Biol. Chem. 276, 670–676
Subramaniam, S. (1998) The biology workbench–a seamless database and analysis environment for the biologist. Proteins 32, 1–2
Temporini, C., Calleri, E., Massolini, G., and Caccialanza, G. (2008) Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins. Mass Spectrom. Rev. 27, 207–236
Thissen, M. C., Krieglstein, J., Wolfrum, U., and Klumpp, S. (2009) Dephosphorylation of centrins by protein phosphatase 2C α and β. Res Lett Biochem. 2009, 1–4
Thomas, A. B., Hashimoto, H., Baylink, D. J., and Lau, K. H. W. (1996) Fluoride at mitogenic concentrations increases the steady state phosphotyrosyl phosphorylation level of cellular proteins in human bone cells. J. Clin. Endocrinol. Metab. 81, 2570–2578
Tzeng, C. M., Yang, C.Y., Yang, S. J., Jiang, S. S., Kuo, S.Y., Hung, S. H., Ma, J. T., and Pan, R. L. (1996) Subunit structure of vacuolar proton-pyrophosphatase as determined by radiation inactivation. Biochem. J. 316, 143–147
Uen, Y. H., Liao, C. C., Lin, J. C., Pan, Y. H., Liu, Y. C., Chen, Y. C., Chen, W. J., Tai, C. C., Lee, K. W., Liu, Y. R., Lin, H. T., and Lin, C. Y. (2015) Analysis of differentially expressed novel post-translational modifications of plasma apolipoprotein E in Taiwanese females with breast cancer. Proteomics 126, 252–262
Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., Ishihama, Y., Hirayama, T., and Shinozaki, K. (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Nebr. Acad. Sci. 41, 17588–17593
Voss, M., Blenau,W., Walz, B., and Baumann, O. (2009) V-ATPase deactivation in blowfly salivary glands is mediated by protein phosphatase 2C. Arch. Insect Biochem. Physiol. 71, 130–138
Yang, X. J. (2005) Multisite protein modification and intramolecular signaling. Oncogene 24, 1653–1662
Yang, F., Camp, D. G., Gritsenko, M. A., Luo, Q., Kelly, R. T., Clauss, T. R., Brinkley, W. R., Smith, R. D., and Stenoien, D. L. (2007) Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus. J. Cell Sci. 120, 4060–4070
Yang, H., Zhang, X., Gaxiola, R. A., Xu, G., Peer, W. A., and Murphy, A. S. (2014) Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions. J. Exp. Bot. 65, 3045–3053
Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., and Shinozaki, K. (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281, 5310–5318
Zhen, R. G., Kim, E. J., and Rea, P. A. (1997) Acidic residues necessary for pyrophosphate energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N, N'- dicyclohexylcarbodiimide. J. Biol. Chem. 272, 22340–22348