研究生: |
陳鴻志 Chen, Hung-Chih |
---|---|
論文名稱: |
以La0.58Sr0.4Co0.2Fe0.8O3-δ為觸媒行高溫甲醇蒸氣重組製氫之研究 A study of high temperature steam reforming of methanol over La0.58Sr0.4Co0.2Fe0.8O3-δ catalysts for hydrogen production |
指導教授: |
黃大仁
Huang, Ta-Jen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 甲醇蒸氣重組 、鈣鈦礦 |
外文關鍵詞: | steam reforming of methanol, perovskite |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的是以鈣鈦礦結構氧化物La0.58Sr0.4Co0.2Fe0.8O3-δ(LSCF)、螢石結構氧化物Ce0.9Gd0.1O2-δ(GDC)為觸媒材料,藉由其具有氧空缺(oxygen vacancy)之特殊結構,進行甲醇蒸氣重組反應(steam reforming of methanol, SRM),希冀作為固態氧化物燃料電池(solid oxide fuel cell)陽極側之觸媒催化層,進行燃料之內部預重組(internal reforming),並透過一氧化碳與水氣產生之水氣轉移反應(water gas shift reaction, WGS),得到更大的氫氣產率,以增進電池效能。
觸媒實驗結果指出在反應溫度區間600~800℃,GDC-LSCF比傳統之電極材料Ni-YSZ或低溫常用甲醇重組之Cu-GDC觸媒有更好的催化活性,其催化活性不隨反應時間的增加而衰退,具有良好之抗積碳能力,因此有較佳的的甲醇轉化率與氫氣產率。由定溫實驗發現,溫度升高將增進甲醇的裂解,並提升轉化率,但也可能增加或降低WGS反應之發生,導致氫氣產率的增減,與觸媒本身特性有關。
若以甲醇蒸氣作為SOFC之燃料,將可添加GDC-LSCF於傳統電極Ni-YSZ表面做為催化層,以補足Ni-YSZ催化能力之不足,先於催化層進行燃料重組反應,產生氫氣、一氧化碳供電池使用。
1.Gattrell, M., N. Gupta, and A. Co, Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Conversion and Management, 2007. 48(4): p. 1255-1265.
2.Kirubakaran, A., S. Jain, and R.K. Nema, A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews, 2009. 13(9): p. 2430-2440.
3.Sun, C. and U. Stimming, Recent anode advances in solid oxide fuel cells. Journal of Power Sources, 2007. 171(2): p. 247-260.
4.Sasaki, K., et al., Multi-fuel capability of solid oxide fuel cells. Journal of Electroceramics, 2004. 13(1-3): p. 669-675.
5.Aguiar, P., D. Chadwick, and L. Kershenbaum, Modelling of an indirect internal reforming solid oxide fuel cell. Chemical Engineering Science, 2002. 57(10): p. 1665-1677.
6.Zhan, Z.L. and S.A. Barnett, An octane-fueled olid oxide fuel cell. Science, 2005. 308(5723): p. 844-847.
7.Marques, P., et al., Selective CO oxidation in the presence of H2 over Pt and Pt-Sn catalysts supported on niobia. Journal of Power Sources, 2006. 158(1): p. 504-508.
8.Liu, Y., et al., Highly active copper/ceria catalysts for steam reforming of methanol. Applied Catalysis A: General, 2002. 223(1-2): p. 137-145.
9.Udani, P.P.C., et al., Steam reforming and oxidative steam reforming of methanol over CuO-CeO2 catalysts. International Journal of Hydrogen Energy, 2009. 34(18): p. 7648-7655.
10.陳曉民, 以氧化釓添加氧化鈰擔載銅為觸媒行甲醇蒸氣重組反應之研究. 碩士論文,清華大學化學工程研究所, 民國九十八年.
11.Laosiripojana, N. and S. Assabumrungrat, The effect of specific surface area on the activity of nano-scale ceria catalysts for methanol decomposition with and without steam at SOFC operating temperatures. Chemical Engineering Science, 2006. 61(8): p. 2540-2549.
12.Galenda, A., M.M. Natile, and A. Glisenti, LSCF and Fe2O3/LSCF powders: Interaction with methanol. Journal of Molecular Catalysis A: Chemical, 2008. 282(1-2): p. 52-61.
13.Sahibzada, M., et al., Intermediate temperature solid oxide fuel cells operated with methanol fuels. Chemical Engineering Science, 2000. 55(16): p. 3077-3083.
14.Assabumrungrat, S., et al., Thermodynamic analysis of carbon formation in a solid oxide fuel cell with a direct internal reformer fuelled by methanol. Journal of Power Sources, 2005. 139(1-2): p. 55-60.
15.Larrubia Vargas, M.A., et al., An IR study of methanol steam reforming over ex-hydrotalcite Cu-Zn-Al catalysts. Journal of Molecular Catalysis A: Chemical, 2007. 266(1-2): p. 188-197.
16.李家豪, 以Cu-ZnO/SDC觸媒行部分氧化性甲醇蒸氣重組反應之研究. 碩士論文,清華大學化學工程研究所, 民國九十二年.
17.Goodenough, J.B. and J.S. Zhou, Localized to itinerant electronic transitions in transition-metal oxides with the perovskite structure. Chemistry of Materials, 1998. 10(10): p. 2980-2993.
18.Inaba, H. and H. Tagawa, Ceria-based solid electrolytes. Solid State Ionics, 1996. 83(1-2): p. 1-16.
19.Hansen, K.K. and K.V. Hansen, A-site deficient (La0.6Sr0.4)1-sFe0.8Co0.2O3-δ perovskites as SOFC cathodes. Solid State Ionics, 2007. 178(23-24): p. 1379-1384.
20.Huang, T.-J., et al., Coal syngas reactivity over Ni-added LSCF-GDC anode of solid oxide fuel cells. Electrochemistry Communications, 2009. 11(2): p. 294-297.
21.Kostogloudis, G.C. and C. Ftikos, Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3-δ -based perovskite oxides. Solid State Ionics, 1999. 126(1-2): p. 143-151.
22.王俊修, 以氧化釓添加氧化鈰為擔體擔載鎳和鐵觸媒行甲烷反應後的自身去積碳行為之研究. 碩士論文,清華大學化學工程研究所, 民國九十五年.
23.陳琬珺, 中溫型固態氧化物燃料電池LSCF陽極之水煤氣反應之研究. 碩士論文,清華大學化學工程研究所, 民國九十七年.
24.Lindström, B. and L.J. Pettersson, Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications. International Journal of Hydrogen Energy, 2001. 26(9): p. 923-933.
25.Shishido, T., et al., Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming. Journal of Molecular Catalysis A: Chemical, 2007. 268(1-2): p. 185-194.
26.Huang, T.-J. and H.-M. Chen, Hydrogen production via steam reforming of methanol over Cu/(Ce,Gd)O2-x catalysts. International Journal of Hydrogen Energy, 2010. 35(12): p. 6218-6226.