簡易檢索 / 詳目顯示

研究生: 楊紫琳
Yang, Zih-Lin
論文名稱: 合成具尺寸可調之硒化鎘奈米粒子並探討其於光學與電化學上的性質
Synthesis of Size-Tunable CdSe Nanocrystals and Their Optical and Electrochemical Properties
指導教授: 黃暄益
Huang, Hsuan-Yi
口試委員: 吳文偉
Wu, Wen-Wei
洪崧富
Hung, Sung-Fu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 68
中文關鍵詞: 能隙調控硒化鎘阻抗測量奈米粒子螢光
外文關鍵詞: band gap tuning, cadmium selenide, impedance measurements, nanocrystals, photoluminescence
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因量子效應展現在光學、電學、磁學等等的性質上使得多數文獻聚焦於量子點上,較少人研究當合成的粒徑超過材料本身的波爾半徑時,是否仍會觀察到類似量子效應的現象。在水溶液下利用前驅物硝酸鎘、硒代硫酸鈉和酸液鹽酸分別在15、45和70度下攪拌一小時製備15、24和32奈米非圓形硒化鎘奈米粒子。改選用氯化鎘和硝酸作為反應物、調整反應物濃度並延長反應時間至4小時可以合成44奈米的硒化鎘奈米粒子。粉末式X射線繞射與選區繞射分析可確定材料為閃鋅礦結構硒化鎘;藉由掃描式電子顯微鏡的成像得知粒子成長過程中從一開始的聚集與不均勻經過一段時間後變得分散與均勻。1544奈米硒化鎘奈米粒子的吸收波帶位置隨著粒徑的增加從520紅位移至571奈米而漫反射光譜決定出的能隙從2.03電子伏特降低至1.68電子伏特,這些光學上的結果說明了當粒子粒徑超過硒化鎘本身的波爾半徑時能隙仍可以被調控。有趣的是,在合成的過程中加入界面活性劑十六烷基三甲基氯化銨分子可以促使硒化鎘奈米粒子放光。在螢光光譜觀察到粒徑從15增加至44奈米時,放光波帶位置從544紅位移至583奈米。由光學技術得到的能隙能量結合Mott‒Schottky分析可以決定材料不同粒徑下的導帶與價帶位置。由電化學阻抗與活性面積分析發現尺寸效應亦反應在電子轉移與電雙層電容值上。


    Quantum dots have attracted scientists attention due to the quantum effect, however, few people know the properties when the particle sizes over the Bohr radius of the material. By preparing an aqueous mixture of Cd(NO3)2, HCl, and Na2SeSO3 at 15, 45, and 70 ºC for 1 h, 15, 24, and 32 nm CdSe nanocrystals with some polyhedral shapes have been synthesized. Adjusting the reagent concentrations, use of CdCl2 and HNO3, and extending the reaction time to 4 h enables the formation of 44 nm CdSe nanocrystals. Powder X-ray diffraction (PXRD) analysis shows that the nanocrystals have a zinc blende crystal structure. Scanning electron microscopy (SEM) observation shows that the initial aggregated and heterogeneous particles eventually become dispersed and uniform. Their absorption bands red-shift progressively from 520 to 571 nm with increasing particle sizes. Diffuse reflectance spectra yield optical band gaps decreasing continuously from 2.03 eV for the 15 nm CdSe particles to 1.68 eV for the 44 nm particles. These optical results clearly demonstrate that their band gaps are still tunable with sizes well beyond the Bohr radius of CdSe. Interestingly, the non-emissive CdSe nanocrystals show an emission band red-shifted progressively from 544 to 583 nm with increasing particle sizes from 15 to 44 nm if CTAC surfactant is added during particle synthesis. Mott‒Schottky plots and the related calculations have determined their valence band and conduction band positions. Differences in the rate of charge transfer and the double layer capacitance of the size-tunable CdSe nanoparticles were also found.

    論文摘要 I ABSTRACT II ACKNOWLEDGEMENT IV TABLE OF CONTENTS V LIST OF FIGURES VIII LIST OF SCHEMES XVI LIST OF TABLES XVII Chapter 1 Introduction 1 1.1 Size-dependent properties of nanocrystals 1 1.1.1 Size-dependent optical properties of Cu2O and Cu3Se2 nanocrystals 1 1.1.2 Size-dependent electrochemical properties of nanomaterials 6 1.2 Methods for enhancing the fluorescence intensity of CdSe nanocrystals 9 1.3 Synthesis of CdSe nanocrystals in organic phase 11 1.4 Synthesis of CdSe nanocrystals in aqueous phase 13 Chapter 2 Facile Synthesis of Size-Tunable CdSe Nanocrystals Showing Size-Dependent Optical and Electrochemical Properties 16 2.1 Chemicals 17 2.2 Instrumentation 17 2.3 Preparation of sodium selenosulfate solution 18 2.4 Synthesis of CdSe nanocrystals using different Cd precursors and acids 19 2.5 Synthesis of CdSe nanocrystals by tuning acid concentration 20 2.6 Synthesis of size-tunable CdSe nanocrystals 21 2.7 Enhanced photoluminescence of CdSe nanocrystals in the presence of cetyltrimethylammonium chloride 23 2.8 Adding CTAC to as-prepared CdSe nanoparticles to check photoluminescence 25 2.9 Electrochemical measurements 25 2.9.1 Electrochemical impedance spectroscopy analysis 27 2.9.2 Electrochemical active surface area analysis 29 2.9.3 Mott–Schottky analysis 29 Chapter 3 Results and Discussion 31 3.1 Effect of Na2SeSO3 solution pH 31 3.2 Effect of HCl concentration 32 3.3 Selection of cadmium precursor and acid 34 3.4 X-ray diffraction patterns and EM images 36 3.5 Growth process of CdSe nanocrystals with different sizes 40 3.6 Size-dependent optical properties of CdSe nanocrystals 45 3.6.1 Light absorption 45 3.6.2 Photoluminescence (PL) analysis 48 3.6.3 The morphology, size, and crystallinity of CdSe nanoparticles in the presence of CTAC molecules 50 3.7 Size-dependent electrochemical properties of CdSe nanocrystals 54 3.7.1 Determination of conduction and valence band positions 54 3.7.2 Electrochemical impedance spectroscopy (EIS) measurements 56 3.7.3 Electrochemically active surface area (ECSA) measurements using cyclic voltammetry 58 Chapter 4 Conclusions 61 Chapter 5 References 62

    1. Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Synthesis of Ultrasmall Cu2O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination. Small 2016, 12, 35303534.
    2. Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9, 3908639093.
    3. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H. Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123, 1366413671.
    4. Chiu, M.-S.; Lin, C.-C.; Lee, A.-T.; Huang, Y.-C.; Huang, M. H. Aqueous-Phase Synthesis of Size-Tunable PbSe Nanocubes at Room Temperature for Optical Property Characterization. Chem. Eur. J. 2019, 25, 367372.
    5. Huang, Y.-C.; Yang, Z.-L.; Hsieh, P.-L.; Huang, M. H. Size-Tunable Cu3Se2 Nanocubes Possessing Surface Plasmon Resonance Properties for Photothermal Applications. ACS Appl. Nano Mater. 2020, 3, 84468452.
    6. Huang, Y.-C.; Wu., S.-H.; Hsiao, C.-H.; Lee, A.-T.; Huang, M. H. Mild Synthesis of Size-Tunable CeO2 Octahedra for Band Gap Variation. Chem. Mater. 2020, 32, 26312638.
    7. Patsula, V.; Moskvin, M.; Dutz, S.; Horák, D. Size-Dependent Magnetic Properties of Iron Oxide Nanoparticles. J. Phys. Chem. Solids 2016, 88, 2430.
    8. Chen, L.; Xie, Jun; Wu, H.; Li, J.; Wang, Z.; Song, L.; Zang, F.; Ma, M.; Gu, N.; Zhang, Y. Precise Study on Size-Dependent Properties of Magnetic Iron Oxide Nanoparticles for <I>in Vivo</I> Magnetic Resonance Imaging. J. Nanosci. Nanotechnol. 2018, 2018, 3743164 3743172.
    9. He, X.; Zhong, W.; Au, C.-T.; Du, Y. Size Dependence of the Magnetic Properties of Ni Nanoparticles Prepared by Thermal Decomposition Method. Nanoscale Res. Lett. 2013, 8, 446455.
    10. Bose, A. C.; Thangadurai, P.; Ramasamy, S. Grain Size Dependent Electrical Studies on Nanocrystalline SnO2. Mater. Chem. Phys. 2006, 95, 72-78.
    11. Hu, X. F.; Li, S. J.; Wang, J.; Jiang, Z. M.; Yang, X. J. Investigating Size-Dependent Conductive Properties on Individual Si Nanowires. Nanoscale Res. Lett. 2020, 15, 5263.
    12. Valden, M.; Lai., X.; Goodman, D. W. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 1998, 281, 16471650.
    13. Zhou, X.; Xu, Weilin; Liu, G.; Panda, D.; Chen, P. Size-Dependent Catalytic Activity and Dynamics of Gold Nanoparticles at the Single-Molecule Level. J. Am. Chem. Soc. 2010, 132, 138146.
    14. Suchomel, P.; Kvitek, L.; Prucek, R.; Panacek, A.; Halder, A.; Vajda, S.; Zboril, R. Simple Size-Controlled Synthesis of Au Nanoparticles and Their Size-Dependent Catalytic Activity. Sci Rep 2018, 8, 45894599.
    15. Thoka, S.; Lee, A.-T.; Huang, M. H. Scalable Synthesis of Size-Tunable Small Cu2O Nanocubes and Octahedra for Facet-Dependent Optical Characterization and Pseudomorphic Conversion to Cu Nanocrystals. ACS Sustainable Chem. Eng. 2019, 7, 1046710476.
    16. Statkutė, G.; Tomašiūnas, R.; Jagminas, A. Copper Selenide Nanowires and Nanocrystallites in Alumina: Carrier Relaxation, Recombination, and Trapping. J. Appl. Phys. 2007, 101, 113715113723.
    17. Galicia-Hernández, J. M.; Sánchez-Castillo, A.; De La Garza, L. M.; Cocoletzi, G. H. Two-Dimensional Cadmium Selenide Electronic and Optical Properties: First Principles Studies. Bull. Mater. Sci. 2017, 40, 11111119.
    18. Kyhm, K.; Kim, J. H.; Kim, S. M.; Yang, H.-S. Gain Dynamics and Excitonic Transition in CdSe Colloidal Quantum Dots. Optical Materials 2007, 30, 158160.
    19. Szemjonov, A.; Pauporté, T.; Ciofini, I.; Labat, F. Investigation of the Bulk and Surface Properties of CdSe: Insights from Theory. Phys. Chem. Chem. Phys. 2014, 16, 2325123259.
    20. Wonglakhon, T.; Zahn, D. Interaction Potentials for Modelling GaN Precipitation and Solid State Polymorphism. J. Phys.: Condens. Matter 2020, 32, 20540120549.
    21. Barzinjy, D. A. Nanostructured Device in Sensing Applications: A Review. EAJSE 2018, 4, 8298.
    22. Chou, K. F.; Dennis, A. M. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors. Sensors 2015, 15, 1328813325.
    23. Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films. J. Am. Chem. Soc. 2006, 128, 23852393.
    24. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998, 281, 20132016.
    25. Chan, W. C.; Nie, S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998, 281, 20162018.
    26. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer. Nature 1994, 370, 354357.
    27. Lin, Q.; Song, B.; Wang, H.; Zhang, F.; Chen, F.; Wang, L.; Li, L.-S.; Guo, F.; Shen, H. High-Efficiency Deep-Red Quantum-Dot Light-Emitting Diodes with Type-Ii CdSe/CdTe Core/Shell Quantum Dots as Emissive Layers. J. Mater. Chem. C 2016, 4, 72237229.
    28. Cunningham, P. D.; Souza, J. B.; Fedin, I.; She, C.; Lee, B.; Talapin, D. V. Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology. ACS Nano 2016, 10, 57695781.
    29. Kucur, E.; Riegler, J.; Urban, G. A. Nann, T. Determination of Quantum Confinement in CdSe Nanocrystals by Cyclic Voltammetry. J. Chem. Phys. 2003, 119, 23332337.
    30. Inamdar, S. N.; Ingole, P. P.; Haram, S. K. Determination of Band Structure Parameters and the Quasi-Particle Gap of CdSe Quantum Dots by Cyclic Voltammetry. ChemPhysChem 2008, 9, 25742579.
    31. Querner, C.; Reiss, P.; Sadki, S.; Zagorska, M.; Pron, A. Size and Ligand Effects on the Electrochemical and Spectroelectrochemical Responses of CdSe Nanocrystals. Phys. Chem. Chem. Phys. 2005, 7, 32043209.
    32. Wang, L.-W.; Zunger, A. Pseudopotential Calculations of Nanoscale CdSe Quantum Dots. Phys. Rev. B 1996, 53, 95799582.
    33. Amelia, M.; Lincheneau, C.; Silvi, S.; Credi, A. Cheminform Abstract: Electrochemical Properties of CdSe and CdTe Quantum Dots. Chem. Soc. Rev. 2012, 41, 57285743.
    34. Liu, J.; Yang, W.; Li, Y.; Fan, L.; Li, Y. Electrochemical Studies of the Effects of the Size, Ligand and Composition on the Band Structures of CdSe, CdTe and Their Alloy Nanocrystals. Phys. Chem. Chem. Phys. 2014, 16, 47784788.
    35. Polec, I.; Henckens, A.; Goris, L.; Nicolas, M.; Loi, M. A.; Adriaensens, P. J.; Lutsen, L.; Manca, J. V.; Vanderzande, D.; Sariciftci, N. S. Convenient Synthesis and Polymerization of 5,6-Disubstituted Dithiophthalides toward Soluble Poly(isothianaphthene): An Initial Spectroscopic Characterization of the Resulting Low-Band-Gap Polymers. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 10341045.
    36. Hines, M. A.; Guyot-Sionnest, P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys. Chem. 1996, 100, 468471.
    37. Trung, N.-N.; Luu, Q.-P.; Son, B.-T.; Sinh, L.-H.; Bae, J.-Y. Enhanced Fluorescence, Morphological and Thermal Properties of CdSe/ZnS Quantum Dots Incorporated in Silicone Resin. J Nanosci Nanotechnol 2013, 13, 434442.
    38. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS Core−Shell Quantum Dots:  Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B 1997, 101, 94639475.
    39. Greytak, A. B.; Allen, P. M.; Liu, W.; Zhao, J.; Young, E. R.; Popović, Z.; Walker, B. J.; Nocera, D. G.; Bawendi, M. G. Alternating Layer Addition Approach to CdSe/CdS Core/Shell Quantum Dots with Near-Unity Quantum Yield and High on-Time Fractions. Chem. Sci. 2012, 3, 20282034.
    40. Ramanery, F. P.; Mansur, A. A. P.; Mansur, H. S. Synthesis and Characterization of Water-Dispersed CdSe/CdS Core-Shell Quantum Dots Prepared Via Layer-by-Layer Method Capped with Carboxylic-Functionalized Poly(Vinyl Alcohol). Materials Research 2014, 17, 133140.
    41. Vasudevan, D.; Gaddam, R. R.; Trinchi, A.; Cole, I. Core–Shell Quantum Dots: Properties and Applications. J. Alloys Compd. 2015, 636, 395404.
    42. AbouElhamd, A. R.; Al-Sallal, K. A.; Hassan, A. Review of Core/Shell Quantum Dots Technology Integrated into Building’s Glazing. Energies 2019, 12, 10581079.
    43. Tang, Y.; Yang, Q.; Wu, T.; Liu, L.; Ding, Y.; Yu, B. Fluorescence Enhancement of Cadmium Selenide Quantum Dots Assembled on Silver Nanoparticles and Its Application to Glucose Detection. Langmuir 2014, 30, 63246330.
    44. Naiki, H.; Masuo, S.; Machida, S.; Itaya, A. Single-Photon Emission Behavior of Isolated CdSe/ZnS Quantum Dots Interacting with the Localized Surface Plasmon Resonance of Silver Nanoparticles. J. Phys. Chem. C 2011, 115, 2329923304.
    45. Nepal, D.; Drummy, L. F.; Biswas, S.; Park, K.; Vaia, R. A. Large Scale Solution Assembly of Quantum Dot–Gold Nanorod Architectures with Plasmon Enhanced Fluorescence. ACS Nano 2013, 7, 90649074.
    46. Kumari, A.; Singh, R. R. Encapsulation of Highly Confined CdSe Quantum Dots for Defect Free Luminescence and Improved Stability. Physica E Low Dimens. Syst. Nanostruct. 2017, 89, 7785.
    47. Bloom, B. P.; Zhao, L.-B.; Wang, Y.; Waldeck, D. H.; Liu, R.; Zhang, P.; Beratan, D. N. Ligand-Induced Changes in the Characteristic Size-Dependent Electronic Energies of CdSe Nanocrystals. J. Phys. Chem. C 2013, 117, 2240122411.
    48. Qu, L.; Peng, Z. A.; Peng, X. Alternative Routes toward High Quality CdSe Nanocrystals. Nano Letters 2001, 1, 333337.
    49. Sapra, S.; Rogach, A. L.; Feldmann, J. Phosphine-Free Synthesis of Monodisperse CdSe Nanocrystals in Olive Oil. J. Mater. Chem. 2006, 16, 33913395.
    50. Zhang, W.; Wang, C.; Zhang, L.; Zhang, X.; Liu, X.; Tang, K.; Qian, Y. Room Temperature Synthesis of Cubic Nanocrystalline CdSe in Aqueous Solution. J. Solid State Chem. 2000, 151, 241244.
    51. Li, R.; Lee, J.; Kang, D.; Luo, Z.; Aindow, M.; Papadimitrakopoulos, F. Band-Edge Photoluminescence Recovery from Zinc-Blende CdSe Nanocrystals Synthesized at Room Temperature. Adv. Funct. Mater. 2006, 16, 345350.
    52. Hodlur, R. M.; Rabinal, M. K. A New Selenium Precursor for the Aqueous Synthesis of Luminescent CdSe Quantum Dots. Chem. Eng. J. 2014, 244, 8288.
    53. Choi, W.; Shin, H.-C.; Kim, J. M.; Choi, J.-Y.; Yoon, W.-S. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-Ion Batteries. J. Electrochem. Sci. Technol 2020, 11, 113.
    54. Handbook of Electrochemistry Edn 1st. Elsevier Science: Oxford, UK, 2006; p 934.
    55. Hernández, H. H.; Reynoso, A. M. R.; González, J. C. T.; Morán, C. O. G.; Hernández, J. G. M.; Ruiz, A. M.; Hernández J. M.; Cruz R. O. Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels, Electrochemical Impedance Spectroscopy. IntechOpen, 2020; p 1.
    56. Poursaee, A., 13 - Corrosion Sensing for Assessing and Monitoring Civil Infrastructures. In Sensor Technologies for Civil Infrastructures, Wang, M. L.; Lynch, J. P.; Sohn, H., Eds. Woodhead Publishing: 2014; Vol. 55; pp 357382.
    57. Lisdat, F.; Schäfer, D. The Use of Electrochemical Impedance Spectroscopy for Biosensing. Anal Bioanal Chem 2008, 391, 15551567.
    58. Wu, J.-K.; Lyu, L.-M.; Liao, C.-W.; Wang, Y.-N.; Huang, M. H. Fast Synthesis of PbS Nanocrystals in Aqueous Solution with Shape Evolution from Cubic to Octahedral Structures and Their Assembled Structures. Chemistry 2012, 18, 1447314478.
    59. Chen, H.-S.; Wu, S.-C.; Huang, M. H. Direct Synthesis of Size-Tunable PbS Nanocubes and Octahedra and the pH Effect on Crystal Shape Control. Dalton Trans. 2015, 44, 1508815094.
    60. Ahmed, F.; Dwivedi, S.; Shaalan, N. M.; Kumar, S.; Arshi, N.; Alshoaibi, A.; Husain, F. M. Development of Selenium Nanoparticle Based Agriculture Sensor for Heavy Metal Toxicity Detection. Agriculture 2020, 10, 610.
    61. Wadhwani, S. A.; Gorain, M.; Banerjee, P.; Shedbalkar, U. U.; Singh, R.; Kundu, G. C.; Chopade, B. A. Green Synthesis of Selenium Nanoparticles Using Acinetobacter sp. SW30: Optimization, Characterization and Its Anticancer Activity in Breast Cancer Cells. Int J Nanomedicine. 2017, 12, 68416855.
    62. Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 76107630.
    63. Makuła, P.; Pacia M.; Macyk, W. How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 68146817.
    64. Jubu, P. R.; Yam, F. K.; Igba, V. M.; Beh, K. P. Tauc-Plot Scale and Extrapolation Effect on Bandgap Estimation from UV–Vis–NIR Data – A Case Study of β-Ga2O3. J. Solid State Chem. 2020, 290, 121576121583.
    65. Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B 1966, 15, 627637.
    66. Liu, Y.; Kim., D.; Morris, O. P.; Zhitomirsky, D.; Grossman, J. C. Origins of the Stokes Shift in PbS Quantum Dots: Impact of Polydispersity, Ligands, and Defects. ACS Nano 2018, 12, 28382845.
    67. Bagga, A.; Chattopadhyay, P. K.; Ghosh, S. Origin of Stokes Shift in InAs and CdSe Quantum Dots: Exchange Splitting of Excitonic States. Phys. Rev. B 2006, 74, 035341035347.
    68. Norris, D. J.; Efros, A. L.; Rosen, M.; Bawendi, M. G. Size Dependence of Exciton Fine Structure in CdSe Quantum Dots. Phys. Rev. B 1996, 53, 1634716354.
    69. Korkusinski, M.; Voznyy, O.; Hawrylak, P. Fine Structure and Size Dependence of Exciton and Biexciton Optical Spectra in CdSe Nanocrystals. Phys. Rev. B 2010, 82, 245304245319.
    70. Nirmal, M.; Norris, D. J.; Kuno, M.; Bawendi, M. G.; Efros, A. L.; Rosen, M. Observation of the "Dark Exciton" in CdSe Quantum Dots. Phys Rev Lett. 1995, 75, 37283731.
    71. Goodarz Naseri, M.; Saion, E.; Khalil Zadeh, N. K. The Amazing Effects and Role of PVP on the Crystallinity, Phase Composition and Morphology of Nickel Ferrite Nanoparticles Prepared by Thermal Treatment Method. Int. Nano Lett. 2013, 3, 1926.
    72. Shah, Z.-H.; Ge, Y.; Lin, X.; Xiu, J.; Zhang, S.; Lu, R. Chloride Capping of CdTiO3 for Higher Crystallinity and Enhanced Photocatalytic Activity. Phys. Chem. Chem. Phys. 2016, 18, 16371643.
    73. Selvi, S. S. T.; Linet, J. M.; Sagadevan, S. Influence of CTAB Surfactant on Structural and Optical Properties of CuS and CdS Nanoparticles by Hydrothermal Route. J. Exp. Nanosci. 2018, 13, 130143.
    74. Fernández-Ponce, C.; Muñoz-Miranda, J. P.; Santos, D. M.; Aguado, E.; García-Cozar, F.; Litrán, R. Influence of Size and Surface Capping on Photoluminescence and Cytotoxicity of Gold Nanoparticles. J Nanopart Res 2018, 20, 305323.
    75. Ajitha, B.; Reddy, Y. A. K.; Reddy, P. S.; Jeon, H.-J.; Ahn, C.-W. Role of Capping Agents in Controlling Silver Nanoparticles Size, Antibacterial Activity and Potential Application as Optical Hydrogen Peroxide Sensor. RSC Adv. 2016, 6, 3617136179.
    76. Gelderman, K.; Lee, L.; Donne, S. W. Flat-Band Potential of a Semiconductor: Using the Mott–Schottky Equation. J. Chem. Educ. 2007, 84, 685688.
    77. De Vries, J. W. C. Temperature and Thickness Dependence of the Resistivity of Thin Polycrystalline Aluminium, Cobalt, Nickel, Palladium, Silver and Gold Films. Thin Solid Films 1988, 167, 2532.
    78. Mayadas, A. F.; Shatzkes, M. Electrical-Resistivity Model for Polycrystalline Films: The Case of Arbitrary Reflection at External Surfaces. Phys. Rev. B 1970, 1, 13821389.
    79. Leonard, K. C.; Suyama., W. E.; Anderson, M. A. Evaluating the Electrochemical Capacitance of Surface-Charged Nanoparticle Oxide Coatings. Langmuir 2012, 28, 64766484.

    QR CODE