簡易檢索 / 詳目顯示

研究生: 張淵揚
Chang, Yuan-Yang
論文名稱: Exploring for Better Photographic Composition in Panoramic Scenes
尋求全景影像中較佳攝影構圖方法
指導教授: 陳煥宗
Chen, Hwann-Tzong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 32
中文關鍵詞: 影像構圖攝影全景觀景窗攝影技巧攝影傑作
外文關鍵詞: photographic composition, photography, panoramic scenes, viewfinder, photographic skill, masterpeice photograph
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出一個自動影像構圖的新問題,並且提供尋找具有良好影像構圖景色的有效技術。我們試圖模仿呈現在專業攝影師作品裡頭的良好影像構圖,而非應用複雜影像構圖規則。我們的方法是嘗試藉由分析影像的結構特色和影像裡視覺上顯著部分的安排,以模組化專業攝影師的構圖風格。透過觀景窗來尋找好的影像構圖的這項工作被我們視為一個搜尋問題,而我們提供一個隨機搜尋的方法,來尋找好的視覺構圖結構且能從照片傑作的資料庫當中選擇合適的對應參考影像。無論在任何全景的起始位置,我們的方法均可以給予使用者建議,使其拍出如專家影像構圖般的較好影像。


    We introduce a new problem of automatic photo composition, and present an effective technique for finding good views within a panoramic scene. Instead of applying heuristic rules of photo composition, we propose to imitate good -composition presented in the artworks of professional photographers. Our method tries to model the composition styles of professional photographs by analyzing the structural features and the layout of visual saliency. The task of finding good photo composition through a viewfinder is formulated as a search problem, and we present a stochastic search algorithm to look for good viewing configurations and to choose suitable reference photos from the collection of masterpiece photographs. Given any initial location in the panoramic scene, our algorithm is able to suggest a better view that would often yield professional-like photo composition.

    Contents 1 Introduction 7 2 Related Work 9 3 Formulation of the Search Problem 12 4 Image Representation 14 4.1 The GIST descriptor . . . . . . . . . . . . . . 14 4.2 The saliency descriptor . . . . . . . . . . . . . 15 5 Algorithm 17 5.1 The neighborhood graph of exemplars . . . . . . . . 17 5.2 The stochastic search algorithm . . . . . . . . . .17 6 Experimental Results 21 6.1 User study . . . . . . . . . . . . . . . . . . . . .22 7 Conclusion 29

    Bibliography

    [1] S. Avidan and A. Shamir. Seam carving for content-aware image resizing. ACM Trans.
    Graph., 26(3):10, 2007.
    [2] S. Bae, S. Paris, and F. Durand. Two-scale tone management for photographic look.
    ACM Trans. Graph., 25(3):637–645, 2006.
    [3] S. Banerjee and B. L. Evans. In-camera automation of photographic composition rules.
    IEEE Transactions on Image Processing, 16(7):1807–1820, 2007.
    [4] Z. Byers, M. Dixion, W. D. Smart, and C. M. Grimm. Say cheese! experiences with a
    robot photographer. AI Mag., 25(3):37–46, 2004.
    [5] T. S. Cho, M. Butman, S. Avidan, and W. T. Freeman. The patch transform and its
    applications to image editing. In IEEE Conference on Computer Vision and Pattern
    Recognition, 2008.
    [6] T. Deselaers, P. Dreuw, and H. Ney. Pan, zoom, scan: Time-coherent, trained automatic
    video cropping. In CVPR, 2008.
    [7] R. Gal, O. Sorkine, and D. Cohen-Or. Feature-aware texturing. In Proceedings of
    Eurographics Symposium on Rendering, pages 297–303, 2006.
    [8] J. Hays and A. A. Efros. Scene completion using millions of photographs. ACM Trans.
    Graph., 26(3):4, 2007.
    [9] X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In CVPR,
    2007.
    [10] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid
    scene analysis. IEEE Trans. Pattern Anal. Mach. Intell., 20(11):1254–1259, 1998.
    [11] J. Kinghorn and J. Dickman. Perfect Digital Photography. McGraw-Hill/Osborne,
    2005.
    31
    [12] J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros. What does the sky tell us about
    the camera? In ECCV, 2008.
    [13] A. Oliva and A. B. Torralba. Modeling the shape of the scene: A holistic representation
    of the spatial envelope. International Journal of Computer Vision, 42(3):145–175, 2001.
    [14] A. Oliva and A. B. Torralba. Contextual guidance of eye movements and attention in
    real-world scenes: The role of global features on object search. Psychological Review,
    113(4):766–786, 2006.
    [15] A. Santella, M. Agrawala, D. DeCarlo, D. Salesin, and M. F. Cohen. Gaze-based
    interaction for semi-automatic photo cropping. In CHI, pages 771–780, 2006.
    [16] C. Siagian and L. Itti. Rapid biologically-inspired scene classification using features
    shared with visual attention. IEEE Trans. Pattern Anal. Mach. Intell., 29(2):300–312,
    2007.
    [17] J. Sivic, B. Kaneva, A. Torralba, S. Avidan, and W. T. Freeman. Creating and exploring
    a large photorealistic virtual space. In First IEEE Workshop on Internet Vision,
    2008.
    [18] B. Suh, H. Ling, B. B. Bederson, and D. W. Jacobs. Automatic thumbnail cropping
    and its effectiveness. In UIST, pages 95–104, 2003.
    [19] A. B. Torralba and A. Oliva. Depth estimation from image structure. IEEE Trans.
    Pattern Anal. Mach. Intell., 24(9):1226–1238, 2002.
    [20] L. Wolf, M. Guttmann, and D. Cohen Or. Non-homogeneous content-driven videoretargeting.
    In ICCV, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE